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A Model-Based Risk Map for Roadway Traffic Crashes

Project Objectives

Visualization of traffic safety data that transfarspatial data into a visual form can help
highway engineers and traffic safety officials féeetively analyze the data and make
decisions on which roadways and road side featior@®prove by providing the spatial
distribution of the data. However, research effantshe visualization of traffic safety
data, which are usually stored in a large and cemghtabase, are quite limited because
of methodological constraints (Miaou and Song, 2008iaou, Tandon, and Song, 2005;
Smith, Harkey, and Harris, 2001). For example,dheme only a few model-based maps
that can account for the high variance of traffiast estimates in low population areas,
and at the same time clarify overall geographindseand patterns. In addition, designers
of roadways historically did not take into accotme full range of driver characteristics,
such as driver perception-response time, age diftars, etc. (Dewar and Olson, 2002).
One of the most important components of the roadwaxsportation is the human driver
whose error is a factor in about 90% of trafficstras (Treat et al., 1977). Therefore, it is
very important for highway engineers and trafficfesa officials to identify and
understand the basics of human factors as relé¢valnving and traffic safety.

To address these two issues, we conducted twoestudi

1. The objectives of Study 1 were to generate a dattdased on several data sets
including traffic safety data, highway inventorytalaand GIS data, to conduct
exploratory data analysis, and to perform spanalysis, with exploratory spatial
data analysis and Bayesian spatial modeling tonesti and map crash risk.

2. The objective of Study 2 was to evaluate closeb igsues involved with road

traffic safety in the state of Arkansas.



Study 1: Statistical Analysis of Arkansas Traffic Gash Data

Introduction

In recent years, many methodologies for mappingntjtya of interest have been
developed in a wide range of fields, such publialtte social sciences, and engineering.
An example is diseasing mapping in public healticgastudies, which has been used to
describe the spatial variation in disease incidemgdadentify areas or locations with
potentially elevated disease risk, and provide rdarimative map for risk assessment,
prioritization, and resource allocation in ordeirtgrove disease risk (Carline and Louis,
1996; Xia et al., 1997; Ghosh et al., 1999; Lawsbal., 1999; Dey et al., 2000; Sun et
al., 2001; Miaou et al., 2003). In traffic safetiaqning, mapping traffic crash risk
corresponds to disease mapping in public healthtratfic crash risk mapping, Miaou et
al. (2003) built model-based risk maps for coumtyel traffic crashes in Texas using
hierarchical Bayes models. Aguero-Valverde and disv&2006) also developed full
Bayes hierarchical spatial models of county-levelad crash frequency, with
socioeconomic, transportation-related, and enviemtal factors. Several multivariate
approaches were proposed to deal with crash cduyngeverity or location in which a
traffic crash occurs (Miaou and Song, 2005; Songl.e2006; Park and Lord, 2007; Ma
et al., 2008). For identifying sites on a roadwwek, which potentially present high
traffic crash risks, ranking sites based on sonter@ is a popular approach. A simple
and straightforward way is to rank them accordimghte number of crashes. However,
this method has several drawbacks (Miranda-Morérad. €2005). In order to overcome
the shortcomings, several different ranking crééehave been proposed to identify
hazardous sites for further engineering evaluadimh safety improvement (Persaud et al.,
1999; Heydecker and Wu, 2001; Hauer et al., 200@nddov, 2002; Hallmark and
Basavaraju, 20002; Midwest Research Institute, 2@@nt et al., 2003; Miaou and
Song, 2005a, 2005b; Brijs et al., 2007; Li and Zh&007).

The objectives of the statistical analysis are ¢negate a data set based on several
data sets including traffic safety data, highwayemtory data, and GIS data, to conduct
exploratory data analysis, and to perform spatmallysis, with exploratory spatial data

analysis and Bayesian spatial modeling to estimatemap crash risk.



As mentioned earlier, this project focuses on KABsbes on rural, two-lane, low
volume, state-maintained highway in Arkansas infQ08ence, we retrieve the crashes

and related information from the data sets adddcesadier.

Data
The state of Arkansas consists of 75 counties (Eig). Annual KAB crash frequencies
for rural, two-lane, low volume, state-maintainedhway at the county level in 2004

were used for subsequent statistical analyses.
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Figure 1. 75 Counties in Arkansas

This type of roadway is 10.3% miles of Arkansasdsyaand about 17.5% of the crashes
are fatal, incapacitating injury, and non-incapatailg injury (or KAB) crashes in 2004.
22.7% of the crashes are KAB crashes on the roadw&p04.White County has the
highest number (=51) of KAB crashes in 2004, anddlcounties, Clay County, Greene



County, and Little River County, have the lowestiner of KAB crashes (=3) in the
year. Figure 2 displays annual KAB crash frequentoe the roadway at the county level
in 2004, exhibiting a spatial pattern.
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Figure 2. KAB Crashes on Rural, Two-Lan, Low-Volume State-Maintained Roads
in Each Arkansas County: 2004 (Darker area indicate more crashes)

A band of dark red counties stretches horizonfatiyn the northwest region and thinning

into lighter hues toward the south and toward tbeheast corner. Such a pattern is a
good reason to suspect spatial autocorrelatiornendata. The observed total vehicle-
miles traveled (VMT) in 2004 is shown in Figure &presenting the size of the

population at risk.
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Figure 3. Vehicle-Miles Traveled on Rural, Two-Lane State-Maintained Roads in
Each Arkansas County (2004)

Figure 4 displays counties whose number of KAB leeasand rates in 2004 are in the top

ten percent (red) and in the bottom ten percenielblThe frequencies and rates are

summarized by descriptive statistics (Table 1)) baxplots (Figure 5). White county is

identified as an outlier in the boxplot for crasbduency, with crash frequency 51 and
crash rate 0.78, while Pulaski county has the Rgleeash rate (0.85) with crash

frequency 17.

Table 1. Descriptive Statistics for Crash Frequencand Rate

Mean SD | Median MAD | Min Max | Range| Skew
Rate 0.46 0.21 0.45 0.21 0.08 0.85 0.77 0.27
Crash| 16.69] 9.76 14 8.9 3 51 48 0.96




Top 10% Upper/Lower KAB Crash Frequency

longitude

lattitude

Top 10% UpperiLower KAB Crash Rate
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Figure 4. Top 10 Upper/Lower Frequencies and RataiArkansas (2004)
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Figure 5. Boxplots for Crash Frequency and Rate



Exploratory Spatial Data Analysis

Similar to Exploratory Data Analysis (EDA) addressen the previous paragraph,
Exploratory Spatial Data Analysis (ESDA) is carriemit for measuring spatial
dependence, detecting spatial patterns in the adpddita, identifying “hotspots”, and
visualizing and mapping spatial data and relatatissics. ESDA is an extension of EDA
and a set of statistical tools for exploring andenstanding spatial properties of the data.
It is important to account for spatial dependentaniodeling and the corresponding
statistical inference because it can lead to utest@arameter estimates and vyield
unreliable significance test. There are two broges of techniques for ESDA, graphical
techniques and numerical techniques. The forméudes thematic map, Moran’s scatter
plot, and significance map. For the latter, them generally two quantities of interest,
global spatial autocorrelation and local spatiatoearrelation. The rationale behind
spatial analysis is based on Tobler’'s First LawGabgraphy, “Everything is related to
everything else, but near things are more reldted tlistant things”.

Global spatial autocorrelation is a global meas@mnof spatial autocorrelation over
the entire observations over an area of interesld fior testing spatial autocorrelation to
detect departures from spatial randomness. Theaplgloran’s | is the most popular
statistics for measuring global spatial autocoti@a and is used in testing the
significance of the correlation with the null hypesis of completely spatial

independence. The statistic is given by

where x; is the measurement at locationi =1,---n, w; is an spatial weight between

locationi and j, and X is the sample mean. The expected value and variane

E ()= 1 and  Var(l)= n°(n-1S, - n(n-1)S, - 25, : where

(n-1)(n+1)s;
SFEii(WHWﬁ)Z ’ SZ:i(Wi.-'-Wi)Z ’ SfZEWu and WiD:Zj:WiJ - In-a

25 =1 i=1

spatially random data set, the observation is atedlto the location on the map where



that observation is taken. If the test statisigtbo far from the its expected value under
spatial randomness, we conclude that the dataxkéiits spatial autocorrelation. The test
can performed using a normality approximation dngis pseudo distribution. Anselin
(1995) recommends testing using a pseudo-distabufand that is the approach used in
this paper. For an in-depth discussion of the disheonormal approximation and pseudo-
distributions to test spatial randomness, referSthabenberger and Gotway (2004).
Global Moran’s | has some similar properties tosthof classical correlation coefficient.
For instance, this statistics ranges from -1 tofd high positive value of the statistics
represents that neighboring values tend to clustgther. That the statistic is zero means
that there is no spatial autocorrelation and theeolations are randomly distributed over
the space.

Global Geary’s C is another global spatial autcglation measure, ranging from 0 to
2. The statistic is equal to 1 for no spatial aateelation, and equal to 0 and 2 for strong

positive and negative spatial autocorrelation, @espely. This statistic is given by

For Arkansas crash data, we found significant dlaléocorrelation by rejecting the null
hypothesis, with very small p-values for both stats (I1=0.31 and C=0.74), which
indicates that the data set are significantly sfigiticorrelated. The positive Moran’s |
indicates that the overall spatial pattern is pasiand counties tend to be surrounded by
counties with a similar number of KAB crash ratdniet is confirmed in the following
maps. The significant autocorrelation is visualizZeg Moran’s | scatter plot and
choropleth Moran scatterplot. Figure 6 displays &hds | scatter plot for Arkansas traffic
crash rate in 2004, plotting KAB crash rates agaweghted average of the neighboring
values. Each point on the graph corresponds twdamaion from the data set. The plot
is also useful for identifying locations whose summding spatial autocorrelation pattern
is different from the overall data set. The plotligided into four quadrants. For instance,

High-High (upper-right) quadrant indicates thathigrash rates are surrounded by high



rates and High-Low (lower-right) quadrant indicatleat high crash rates are surrounded

by low crash rates.
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Figure 6. Moran’s | Scatter Plot for Arkansas Crashrate in 2004. Upper-left
quadrant: Low-High (negative spatial autocorrelation), upper-right quadrant:
High-High (positive spatial autocorrelation), Lowerleft quadrant: Low-Low
(positive spatial autocorrelation), lower-right quadrant: High-Low (negative spatial
autocorrelation)

Hence, the two quadrants represent positive andativeg spatial autocorrelation,
respectively. The scatterplot also allows us tceestigate the proportion of counties that
deviate from the overall pattern of positive sdasiatocorrelation. Points lying in the
upper left quadrant correspond to counties withow trash rate, whose neighbors
experienced a high number of crashes. Points Iyinghe lower right quandrant

correspond to counties with a high crash rate, emesghbors experienced a dissimilarly



low number. These counties exhibited a negativaiapautocorrelation pattern, and
therefore deviate from the overall pattern of astung of similar values.

Note that three observations 10 (Madison), 11 (Gemunty), and 36 (Faulkner county)
are identified as leverage points, which strongiffluence the spatial autocorrelation..
The choropleth Moran scatterplot is a mapping ef Moran scatterplot onto the actual

map, shown in Figure 7.
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Figure 7. Choropleth Moran Scatterplot for ArkansasCrash Rate in 2004

These plots allow for a quick comparison of KABstraate at county level compared
to that of its neighbors. Counties shaded a datlcoerespond to points in the upper right
guadrant. These are counties with high valuespaanded by high values (high-high).
Counties shaded a dark blue correspond to pointserower left quadrant (low-low).
Thus, a dark color indicates positive spatial aoadation. Counties shaded a light red

correspond to points in the lower right quadranglfHow), while points for counties
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shaded a light blue can be found in the upperdatidrant (low-high). A light color
indicates negative spatial autocorrelation. ltasrfd that the KAB crash rates exhibit
positive spatial autocorrelation in most of thetest® band of dark red stretches across
the top of the map and the bottom portion is mostlyered by dark blue. We can also
pick out counties with negative spatial autocotieta For example, the light red county
surrounded by dark blue in the bottom left corse®evier County. Future research might
address the question of why Sevier County is latatéow KAB crash region.

The global spatial autocorrelation addresses whetigedata set as a whole exhibits
spatial autocorrelation, while we may want to deiee if there is spatial autocorrelation
around a specific county. Local spatial autocotr@aanswers its purpose. The spatial
autocorrelation is generally used for identifyiogdl spatial cluster and outlier, assessing
stationarity, and assessing influence of individoakervations to the global spatial
autocorrelation. Local indicator of spatial autoetation (LISA) is the most popular
local spatial autocorrelation measure, introducgdAhselin (1995). This statistic is a
means of determining whether a particular locati®rsurrounded by locations with
attributes that have markedly similar (positivetsdacorrelation) or dissimilar (negative
spatial correlation) values. Such locations arerretl to as “hotspots”. There are several
commonly used statistics which measure this cligjeof similar values around a
particular point, including local Moran’s | , G ar@*. In this study, we utilize local
Moran’s | in the subsequent analysis. Local Mordrsatistic is given by

|i :X'—_)_(ivvu (Xj —)_()’ i =1...,n.

>(x -x) =

i=1

The interpretation of this statistic is identicalthat of the global Moran’s | addressed
above. That the statistic at a location equals oo zindicates a lack of spatial
autocorrelation at the location. A large positivewe of the statistic indicates positive
spatial autocorrelation. Like the global Moran’stie local Moran’s | can be used to
perform a statistical test for significance of splasiutocorrelation (permutation test). The
global Moran’s | tests for spatial autocorrelatafrthe entire data set; the local Moran’s |
tests for spatial autocorrelation around a pamicpbint. However, the local Moran’s | to

test hypotheses of non-spatial autocorrelationesaishat is known in statistics as the

11



multiplicity problem. When utilizing LISA’s to det¢ hotspots, a statistical test is
performed at each location in the data set. A apdéta set with an attribute at each of m
locations will require a hypothesis test at eacthefm locations. A total oh hypotheses
are required, so the multiplicity problem arises.

The multiplicity problem refers to the fact that @vhperforming multiple statistical
tests, the likelihood of making a mistake increadédhe probability of incorrectly
detecting spatial autocorrelation at each locatibe,significant level, is set at 0.05, then

the probability of incorrectly detecting spatialt@zorrelation for at least one of time

locations becomes- 095". Thus the probability of making a mistake goesaspthe
number of locations increases. If no adjustmenné&le, it is highly likely that some
locations will be identified as hotspots even thotigey are actually not hotspots, called
as false positives. The Bonferroni method is thaditional technique for dealing with the
multiplicity problem. The Bonferroni method consadlype | error & ) by testing each of
the hypotheses at level/n, wheren is the number of hypotheses being tested. In local
autocorrelation testingy is the number of locations. The drawback to thefBaoni
method is that it is too conservative. While susédty controlling for the possibility of
making false positives, this method raises the ghdlly of making the mistake of
overlooking locations which truly are significandrfspatial autocorrelation; that is,
making false negatives

The False Discovery Rate (FDR) controlling methogspnts a compromise between
the overly conservative Bonferroni method and thigalfs of multiple testing with no
adjustment. The false discovery rate refers toptioportion of false discoveries over the

total number of discoveries made.

FDR = Number of INCORRECTLY rejected Null hypotheses
B Number of rejected Null hypotheses

The FDR controlling method sets the expected vafube FDR, usually at 0.05. By
allowing for some false discoveries, this methddves for more true discoveries while
still accounting for multiple testing. The FDR cuolling method is appropriate in
situations where making some false discoverieség@able, and is suitable for the case

of Arkansas crash data. If the multiplicity probles not adjusted for, many false

12



positives are detected, leading to waste resowitesated to them. Overly conservative
Bonferroni method might miss most, possibly allhofspots, and thus it results in failing
to address any problems indicated by the presehitese hotpots. The FDR controlling
method provides a desirable compromise betweerethgs extremes. Additionally,
Caldas de Castro and Singer (2006) concluded thrtheyuse of simulations that FDR is
the best method to apply when testing for locatiapautocorrelation. In this paper, we
perform LISA testing using FDR, Bonferroni and upatied, and compare the results.
We then proceed with our analysis using the reseiitthe FDR controlling method.
Mapping the local Moran’s | statistics is used ttentify locations whose spatial
autocorrelation pattern deviate from that of therall data set, and to further understand
how the spatial autocorrelation pattern changessacspace. The LISA is calculated for
Arkansas crash data, and the significant valuegwdiferent p-value adjustments are

depicted in Figure 8.
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Figure 8. Significant LISA Values under Differentp-value Adjustments

As expected, the two extreme adjustments detedrtadlest (Bonferroni) and largest
(Unadjusted) significant counties, and FDR pointd eight significant counties. A
noteworthy result is that Pulaski county is notitiiéeed as a hotspot in the analysis even
though it is identified an extreme outlier in EDAccording to local Moran’s | test,
Pulaski County is not significant for spatial awoelation; there is no significant
clustering of high KAB crash rates around Pulaskirdy. Note that all of the counties
identified as hotspots, under all three multipiteg procedures, had a positive Moran’s
| statistic; that is, the counties with high KABash rates identified as hotspots are
surrounded by counties with a similarly high craste. Likewise, low crash rate hotspots
are surrounded by counties with low crash ratest #he purpose of potential
management zones for traffic safety, Figure 9 ngaplsal and local Moran’s | statistics.

The map for the global statistics can be partitibimto three zones: zone 1 (red), zone 2

14



(blue), and zone 3 (light blue and light red). Bhea the interpretation of autocorrelation,
these zones can be interpreted as high crashaate low crash rate zone, and unstable
zone, respectively. Since zone 1 is primarily déiast in traffic safety, the zone can be
divided into two subdivisions based on the localtistics: subdivision 1 (red) and
subdivision 2 (the rest of high crash rate). Thas give some insight into planning traffic

safety management zone.
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Figure 9. Significance Maps and Potential ManagemeérZones: for three LISA maps,
Blue (p-value>0.05), Light Blue (0.01<p-value<0.05)ight Red (0.001<p-
value<0.01), and Red (p-value<0.001). For Global Man’s | map, High-High (Red),
Low-Low (Blue), High-Low (Light Red), and Low-High (Light Blue)
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Model-based risk mapping
As part of modeling efforts, the Poisson hierarahiBayes model is employed. It is
shown that risk estimates based on the hierarctiBeglesian modeling have several
advantages over raw estimates. In particular, stwnates are typically unreliable in the
areas where incidences of traffic crashes areivelgtrare. The hierarchical Bayes
models with spatial random effect can address sinatvbacks (Banerjee et al., 2004).

We define variableY; and v, as the total number of reported KAB crashes armd th

i
observed total VMT on the rural roads of inter@stountyi in 2004, respectively. We
also consider four covariates. The first covariegea surrogate variable for taking
accounting of road surface condition. In particutane that the road surface is wet due
to rain, snow and ice is of interest. Hence, wedube proportion of KAB crashes that
occurred under wet pavement condition due to rathsmow as a surrogate variable. We
define a KAB crash related to wet pavement whose surface in crash data is recorded
as wet or ice. The second one is a surrogate Varigibended to represent spatial
difference in the number of sharp horizontal curieslifferent counties. We chose the
proportion of KAB crashes that occurred on sharpzieotal curves in each county as a
surrogate variable, and we define a KAB crash eeldab sharp horizontal curve whose
crash roadway alignment in crash data is recordeduave. The third covariate is
intended to represent degree of road hazards. Wsectihe proportion of KAB crashes
related to fix objects, such utility pole, guard,rand sign, in each county as a surrogate
variable. These variables are summarized by boxpldtigure 10 and by descriptive
statistics in Table 2.
Table 2. Descriptive Statistics for the Covariates

Statistics Wet Curve Object
Mean 0.22 0.55 0.54
SD 0.13 0.21 0.19
Median 0.22 0.55 0.54
MAD 0.12 0.27 0.17
Min 0 0.11 0.19
Max 0.67 1 1
Range 0.67 0.89 0.81
Skew 0.54 -0.07 0.41

16
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Figure 10. Boxplots for Three Covariates
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Spatial distributions of these variables are shawhigure 11, Figure 12, and Figure 13,
respectively. Two outliers are detected in the tweaplots (Wet and Object), and both
outliers correspond to Greene County.
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Figure 11. Proportion of KAB Crashes that OccurredUnder Wet Pavement
Conditions for Each County in 2004
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Figure 12. Proportion of KAB Crashes that Occurredon Sharp Horizontal Curves
in Each County in 2004
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Figure 13. Proportion of KAB Crashes Involving Vehtles that Hit Fixed Objects on
the Roadside for Each County in 2004

In the modeling, conditional on mean, the total number of KAB crashé§ is
assumed to be mutually independent and Poissarbdistd asY, ~ Poissorfy, )
where 1, =v; A, and 4, is the KAB crash rate. The rate is modeled in galimeed linear

mixed model (GLMM) framework,

log(4;) ZZﬁkXik tgte, i=1-n,
K

where x, are covariates discussed earlig, is a regression coefficieng is a spatial

random effect, and; is a unstructured random effect.
Before Bayesian analysis, we fit the data to asatat Poisson regression without the

two random effectsg and &, and calculate the resulting residuals for ingsging

20



spatial variation in control of the covariates. g 14maps the residuals, showing that
they are still not spatially independent. This @nfirmed by Moran’s | test of the
residuals. The null hypothesis is rejected withyvemall p-value. These facts envision

spatial modeling for the data.
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Figure 14. Residuals from a Poisson Regression Mddeithout spatial and residual
random effects

In order to complete Bayesian modeling, we neesptxify prior distributions for the

model parameters. We place independent and nomafore normal prior org, and

& . With Regard with spatial modeling in the GLMM,ewadopt conditional

autoregressive (CAR) model (Besag 1974 and 19#3héospatial random effeg, and

the joint distribution ofg is given by
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p(m,,wn) U eX[{_Z—iZIZ\N“* (w _40,*)2}

wherer? is a variance parameter amg. is a spatial weight associated with county

andi *. Markov Chain Monte Carlo (MCMC) techniques argliemented to sample the
posterior distributions. The MCMC simulation reagheonvergence quite quickly, so
10,000 iterations are performed, with discarding first 5,000 iterations as burn-in. The
simulation is summarized in Table 3, and the edBoh&AB crash rates per MVMT by

county from the model is shown in Figure 15, witwrannual KAB crash rates per
MVMT by county for 2004. The wet pavement and honital curve variable are found as

the significant variables to explain the crash ,rdiat none of them are statistical
significant.

Table 3. Posterior Summary of the regression coeffients

Coefficient Mean 2.5% Median 97.5%

B, (Wet) -0.6876 -2.673 -0.6695 1.169
B, (Curve) 0.5710 -0.7090 0.5825 1.819
B, (Object) | -0.1434 -1.497 -0.1337 1.121
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from the model (Lower) per MVMT by County in 2004
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Discussion
In this project, we demonstrate the use of somstatistical methodologies for spatial
analysis for roadway traffic crashes at the couetgl. ESDA is a simple and powerful
tool for exploring spatial data. In the beginnirfgspatial analysis, this approach can give
some insight into further analysis. For the dataasmlyzed in this project, global and
local spatial autocorrelation are measured andedessing the approach. The results
motivate to consider spatial effect in modeling amapping crash risk. In the modeling,
we create three covariates in that there is noilabta any direct measure representing
crash characteristics of interest. The estimasioggests us to consider more extensive
characteristics. In this analysis, only one-yeashrdata is used in the analysis. An
obvious extension of the current study is to dgveisk maps for traffic crashes over
several years. This can provide temporal trendadlcrisk. Finally, traffic crash data are
fundamentally network-based data rather than cebased data. To our knowledge,
there are few statistical methods for network-badatd. We expect that these network-
based crash risk map will be more useful for roadsafety planners and engineers to 1)
identify potentially risky road segment or intersec in network, 2) to optimally allocate
resource to the roadway for improving and redu¢hrg number and severity of traffic
crashes, and 3) monitor and evaluate the safetfjorpgance on the roadway after

improvement projects.
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Study 2: Evaluating Arkansas Roadway Intersection &cidents Using
Traffic Safety Analysis Methods - Generalized Estirating Equations
and Roadway Observation

ABSTRACT

Considerable research has been made in recenttgeavaluate road traffic safety. This
is especially true with the United States, whodserimational rank in public safety is
rapidly declining. In 2004, Arkansas ranked as tthied highest in traffic fatalities
among all the states. These are striking numietsréflect the lack of attention that the
state has received in terms of evaluating roadidraffety. Historically, this safety is
measure by one of two methods: Statistical analysgfehistorical data or hands-on,
observational analyses of present safety conditid®erely in research are both methods
used within the same study. With this in hand, dhgective of this research was to
evaluate closely the issues involved with roadfitrafafety in the state of Arkansas. A
database of all road traffic accidents within Arkas between 2002 and 2004 was used in
order to perform statistical testing and analysekhe study focused on intersection
related crashes occurring on road segments witl8nhighways, State highways, and
Interstates with medium to heavy traffic volumels. conjunction with these analyses,
several hands-on observations of intersection ilmeatvere made to compare actual road
safety with the statistical results, as well apravide additional information that was not
represented within any collected data. After adhgfchoosing key road segment
locations throughout Arkansas, the intersectionsewsurveyed for potential crash
hazards. With the combination of these two apgreadhe leading factors for collisions
in Arkansas were evaluated and preventative measueee recommended. Of all the
potential factors, substantial attention was giteethe human factors involved with road
collisions. Historically, these factors have bdeand to be the most common of all
factors, easiest to prevent, and therefore neatimgnost immediate attention.

The statistical models developed for Arkansas r@adwvere the Poisson, Negative
Binomial, and Logistic regression models. Among significant contributors to crash
frequency and severity were road width, numbeanés$, pavement condition, horizontal
and vertical curvature of the road design (p < D.0Also, weather and light conditions,
seat belt usage, age, alcohol consumption, and euofbpassengers were shown to be
significant to predicting crash frequencies andfrerities (p < 0.01).

The observational analysis provided many insigimsow road infrastructure and road
surroundings can affect driving patterns and dribehavior. Poor signage, lane
markings, traffic signals, and obstacles such adiane all can potentially decrement the
driver’s experience and increase the risk of doltis

The unique aspect of combining these two methods/sti a vast improvement

on the understanding of road traffic accidents safity within the state of Arkansas.
Their results give great insights and highlightguatal issues of the driver behaviors and
roadway characteristics that effect road traffiesa



CHAPTER | - INTRODUCTION

1.1 Background

Road traffic safety has been a major issue achossmorld for decades, and
there has been an increasing demand for it in tegears due to numerous factors.
First, the human population is growing at exporentates, putting more and more
drivers on the road each year. In addition, tradiskances for these drivers and
vehicles have also recently been showing increagesnsequently, automobiles are
spending more time active on the roads than evdorde(Federal Highway
Administration, 1992-2006). The result of thesal asther aspects equates to the
heightened vulnerability of vehicles being involviedroad traffic accidents. Despite
the current efforts of addressing road safety, nbhmber of people affected by each
accident grows every day (Peden, 2004). Regardi€skese increasing trends and
what may be written about them, the majority ofddeaffic accidents are entirely
preventable, given the proper attention. To that, @esearchers have expressed the
need to observe and analyze past and present atzideorder to find the significant
factors that are associated with increases instoflirisks. With the understanding of
those factors, their research can then lead toprewentative measures.

Within each crash there are several characteristiels in which it can be
detailed and explained. These levels can containnaber of elements, or factors, that
describe the accident from all different anglesn deneral these levels include
environmental, geographical, infrastructural, vehac, temporal, and human
conditions, which all play an integral part in apkining a collision (Evans, 2004).
These range from the time of day, weather condtionad design, age, type, and make
of the vehicles, to driver cell phone or seat bsk. Hundreds of factors can potentially
play a part in every road traffic accident. Thiishbecomes important to determine
which factors are critical, leading causes of eachck. With access to crash data,
researchers can begin to analyze several factarg gtatistical modeling to accurately
predict and measure crash outcomes. With newsstati packages available, more and
more complex methods can be applied to fit almost data into meaningful results.

Kim et al. (2007) has discussed the analysis adlci@utcome probabilities by using a



hierarchical logistic model as the base of studytfeir data. In another study by
Milton et al. (2008), crash severity was under obaton, using a mixed logit model.
Other studies use statistical modeling to determengsh counts (Abdel-Aty and
Radwan, 2000), crash rates (Anastasopoulos, Tamkd Mannering, 2007), or overall
road safety indexes (de Leur and Sayed, 2002). arheunt of unique models and
applications for accident data is enormous, whigdans incredible care must be taken
when choosing the proper model.

Results from these statistical analyses can shede slight on numerous
methods for improving road traffic safety. Geodriapl/infrastructural factors can be
affected by the redesigning, engineering, and reasmce of existing roadways, giving
drivers more mobility, awareness, and control. i¢elar factors can be affected by the
designing of newer, safer vehicles. Law enforcemnaewl driver education can lead to a
better control and understanding of the human fadgtosolved in road traffic accidents.
The key is to pinpoint which factors are the masportant factors, and then to apply
the necessary provisions (Janson and Karimkhagil 20

For any of this to work, the accident data usedtnbesas reliable as possible.
Richard Scurfield of the World Bank’s Transport Bement states that one of the
biggest obstacles facing crash analysis today esatundance of poor quality data
(2002). Some studies have even shown that althdhighanalysis is a beneficial
method in determining the important relationshipthim crash data, statistical studies
may not be enough in several cases where the dataticompletely accurate. For
example, an experiment performed by de Leur estedwed the increased reliability of
using a proactive, observational study of roadw@g®2). This type of analysis gives
first hand and real world views of the road systehmwing the nature of traffic flows
and trends that might not be fully describable tatistical crash data. The quality of
data found in these experiments was shown to bigyvagperior. However, due to the
amount of time and high costs associated with ofsgrall the necessary road systems
across the globe, this method often times beconfessible. There is a natural trade-
off between practicality and accuracy when dealimgh these two approaches.

Historically, road traffic safety is evaluated ugione of these two methods. Rarely are



the two researched in conjunction with each otlérich is regrettable due to the
amount of information gained from using both pectpes.

Although road traffic safety has been an area widaldied for years, there is
an increasing need for more specialized studieends and factors related to roadway
accidents are highly useful to road designers aneeid alike, but trends and factors
are known to vary in different settings. A 2004idst conducted by the US Census
Bureau found that the average number of traffialidéés for every 100,000 vehicle
miles traveled ranged from 0.87 in Massachusets 28 in Mississippi. According to
this ranking, Arkansas places as the third higlstate having an average of 2.22
fatalities per 100,000 vehicle miles traveled (U&8us Bureau, 2004). Despite these
high numbers, Arkansas is a state that has yeetéuly evaluated in terms of road
traffic safety. To the knowledge of the author,stody has yet been published that has
considered the conditions involving roadway trafiiccidents throughout Arkansas. A
study based exclusively on Arkansas may be ableeteal the reasons, factors, or
trends behind a traffic rating of over 2.5 timee #afest state ratings; a rating that all
states should be able to achieve.

1.2 Research Goals

With this information at hand, the objective ofdliesearch was to evaluate
closely the issues involved with road traffic saféh the state of Arkansas. This
overall objective served as the keystone efforbagaished by the following research

goals.

1.2.1 Evaluating Road Safety in Arkansas Using Stistical Analyses

A database of all road traffic accidents and roagnsents within Arkansas
between 2002 and 2004 was used in order to perétatrstical testing for the analysis
of road traffic safety issues. Models were devetbfp measure the effect of numerous
potential crash factors associated with both cfestpuency and crash severity. These
models were used to determine the significance athecrash factor, which
corresponded to several aspects of the crash,dmguthe time, location, weather
conditions, road features, vehicle, and driverr this analysis, the decision was made

to focus specifically on intersection related cesshdue to the historically large



proportion of road traffic crashes which occur rmtersections. This is chiefly due to
the increased vehicle contact and conflict (Abdgf;Xeller, and Brady; 2005).

1.2.2 Evaluating Road Safety in Arkansas Using Obsetional Analyses

Several intersection locations were chosen to baluated using hands-on
observations. This required on-site examinatiard surveys of road conditions, driver
behaviors, and the effect that road conditions havelriver behaviors. This type of
analysis allows for several crash hazards to bergbd, analyzed, and described in a
way that is not represented within any collectestdrical data; especially with regards

to human factors.

1.2.3 Developing Implications of the Two Methods Wl Together

Each method gives a different perspective of raaffit safety. The limitation
of one study may be the strength of the other studipre importantly, using both of
these methods for safety evaluation gives a condbingight that is vastly superior to

either of the stand alone methods.



CHAPTER Il - LITERATURE REVIEW

2.1 Growing Need for Improved Road Traffic Safety

Road traffic safety is not a new issue. It hagrbaround since the first
automobile moved onto the road, but its importamag grown drastically. In less than
a century since its invention, the automobile bezdine leading cause of young adults’
deaths in the United States (Mashaw and Harfst1199Today, these trends have
grown and spread all around the world. Road taficidents and injuries are quickly
becoming the leading concerns in global healtheestly in developing countries
(Peden, 2004). As these risks have continueddal&e, the United States has failed to
maintain its position as the world leader in safetyd continues to fall in the ranks
(Evans, 2003). There is now a great need for gaéention in the United States, and
in particular, road traffic safety. This need dsnseen through numerous risks that are
currently growing in impact. Population growth atethnology are just a couple of
these risks, while lack of litigation is another.

2.1.1 Increased Volume of Vehicles

World population is undoubtedly growing as it ajwéhas. By the year 2000,
the global population officially exceeded 6 billioand it is projected that it will jump
to 7 billion early within the next decade (US Cenddureau, 2008). Generally, the
population growth has been steady over the pastéfs, showing an annual increase
of around 1% for the United States. Between 20t 2005, the United States had a
total population growth of about 5.3% (NHTSA, 20R006). This trend also continues
when considering the number of registered vehieled licensed drivers within the
United States. Throughout the past decade, adlyp®ar produced nearly 2 million
new licensed drivers and around 2.5 million newisteged vehicles. This increase has
dramatically increased the vehicle volume on todagads, making travel all the more
demanding for each driver (Pickering, 2004). Higlywstatistics from the US
Department of Transportation have also shown amease in the average total
automobile kilometers travelled annually (FHA, 198306). What this means is that



not only are there more cars on the roads each peareach vehicle is active on the
roads longer. People are now travelling longetatlices for work or for recreational
travel than ever before, further increasing theuwtd on the United States roadways
(Pickering, 2004). Leonard Evans, DPhil., who hasrbone of the lead researchers of
traffic safety for well over 30 years, has suggedtee two most important factors in
traffic safety: the individual driver's behaviand the behavior of all other road users
(Evans, 2003). Therefore, with a substantial iasee of road users, the workload
demanded on each individual driver also increasdss gives rise to potentially more

and more road traffic accidents if not preventedulgh road traffic safety measures.

2.1.2 Increased Driver Inattention

The ability to drive and to drive safe depends lom rhitigation of a number of
important tasks which often relate to driver foarsd control (Salvucci, 2006). In
terms of control tasks, the driver must have tihainds on the wheel in order to steer
and have their feet on the brake and acceleratamlalp to drive. Focusing tasks not
only include the driver keeping their eyes on tbad;, but processing what is going on
in order to stay in the proper lane, maintain ttspieed, obey traffic signs and signals,
and avoid any sudden hazards. The level of fobas$ the driver has at any one
moment also affects their ability to make decisiorsle driving. According to their
comprehensive study, Weirwille et al. found thatdlthese primary tasks require some
amount of cognitive processing from the driver (Yalie, Tijerina, Kiger, Rockwell,
Lauber, and Bittner Jr., 1996).

The danger in road traffic safety is when driveas fo perform these tasks, by
taking their hands off the wheel and their eyestlo#f road (Pickering, 2004; Wogalter
and Mayhorn, 2005). In most cases, this is a auesgce of additional tasks performed
by the driver that are not related to the primagkt of controlling the vehicle and
focusing on the road. The National Highway Traffiafety Administration performed
a study which surveyed drivers who admitted to graning tasks such as talking on
cell phones, changing radio stations, eating, mglkvith passengers, fixing their hair,
and even daydreaming while driving (Sundeen, 2001)st as for the primary tasks,

these additional tasks also require cognitive psicgy by the driver. However, several



studies have shown that the processing capabilityary single driver is limited
(Weirwille et al., 1996). When any one task densatab much of the driver’s total
cognitive capacity, overall performance of thaktasay be degraded. This is also true
when several tasks require more than the driveta tmental capability; one, many, or
all of the tasks’ performances can be degraded. aFdriver, a task such as adjusting
the radio station requires some of the attentian wWas being used to focus on the road,
as well as a hand that is no longer on the wheelbearth eyes which are no longer on
the road. Distracting tasks like this, along wittany others, create an enormous
amount of mental workload for the driver, which bupotentially lower the
performance of the primary tasks. This can resulivehicles swerving in lanes,
speeding, driving through stop signs, or runningp inbjects. Therefore, it is not
surprising to find out that the more distractiohsittare presented the more at risk
drivers are at being involved in a collision or rxpiinjured (McCormick, 2003,
Pickering, 2004).

Today, with the rise of technology there is no shge of distractions, especially
for drivers (Trbovich and Harbluk, 2003; Wogaltérag, 2006). At the helm of these
distractions are cell phones and their growing asay everyday life. Cellular
telephones were introduced in the early 1980’s with intent of having a quick,
convenient, and remote source of communicationalider emergency situations.
During the first decade, the cell phone was thowdhnhore or less as a novelty item,
which due to its bulkiness and price often foundyview users (Sundeen, 2007).
Today they have evolved into a widespread commodityeap in price and with
limitless functionalities; texting, e-mail, videm@ image recording are all examples of
the cell phones use today (Wogalter et al., 2006).1995 there were a total of 28.1
million wireless subscribers, according to the @all Telecommunications and Internet
Association. That total grew to 97 million in 2QA®4.4 million in 2005, and as of the
beginning of 2008 it has reached over 254.6 millsubscribers (CTIA, 2008). The
CTIA also showed that over 80% of the US populatommns some type of cellular
phone, as opposed to only the 11% in 1995. Theorexmtial rise of wireless
subscribers has also shown a substantial increafequency of use (Wogalter et al.,

2006). Cell phones are no longer used merelyHerrare emergency, and because of



their mobility, calls no longer have to wait foretloffice or at home. People are more
accessible because of cell phones, which allow theermake calls at practically any
time of the day and at low costs. In a 2001 studgearcher David Strayer found that
85% of all cell phone users admitted to using tiveimile driving, and that nearly 60%
of all cell phone conversations occur while in dicee (Strayer, Drews, Albert, and
Johnston, 2001).

The use of cell phones presents several potentth#ifracting activities for a
driver of an automobile. According to Goodman ket these tasks include acquiring
the phone, dialing, engaging in communication, atiger associated tasks such as text
messaging, or reading a map or calendar. In getteracell phone is not immediately
in the hand of the driver, but rather it is somerehehere it must be found and
grasped. Phones in pockets, purses, dash boasblesn or other areas require the
driver to move one or both hands off the steerirfteeV to search for the phone.
Dialing is also a task that requires at least acaredhand generally both eyes (Goodman,
Tijerina, Bents, and Weirwille, 1999; Wogalter &t 2006). The actual conversations
can vary substantially with how much cognitive psssng actually occurs, depending
on whether the driver is talking or listening.also depends on how engaged the driver
is with the conversation. In general, the moreagegl a driver is in conversation, the
less engaged they are in focusing on what is hapgem the road (Lamble, Kauranen,
Laakso, and Summala, 1999).

In 2004, General Motors released a public statenwaiming that driver
distractions contributed to more than 25 percentaofomobile crashes (Pickering,
2004). However, recent studies have shown thatoup8 percent of crashes studied
over a 12 month data collection period were dueriver inattention; 60 percent of
near-crashes were also shown to be caused by distra(Klauer, Neale, Dingus,
Ramsey, and Sudweeks, 2006). Statistics from tb@6 2study by the National
Highway Traffic Safety Administration has even skmowhat driver inattention
generated 4.9 million crashes, 34,000 fatalitieq, rRillion injuries, and up to $184
billion in economic damage. Therefore the movently has been for state legislatures
to pass laws and regulations of cellular phonebkdip lower these numbers. Every

state and area in the US has at least proposed feomedf cell phone regulation in the



past five years, yet only New York, New Jersey, Bxstrict of Columbia have passed
laws banning hand-held cell phones (Sundeen, 200#ends are now showing that
there will be a rise in hands-free cell phonesha tuture. Whether or not this will
make a significant contribution to crash safetyyé& to be seen. Currently, many
researchers are analyzing the effects of both handsnd hands-free technology, and
the differences between them. Some studies haead shown that hands-free cell
phones do not make a significant improvement owardheld cell phones, despite the
fact that they eliminate the distractions of searghfor and manipulating the device
(Redelmeier and Tibshirani, 1997; Tijerina, 2000)ore research in this area is needed
in the coming future.

Cellular phones are currently the leading sourcenefehicle distraction, but
they are being closely followed by the steady aaew auxiliary devices entering into
the global marketplace; these include products Reesonal Data Assistants (PDAS),
Global Positioning and Navigation Systems (GPSY ki3 players (Pickering, 2004;
Salvucci, Markley, Zuber, and Brumby, 2007; Sunde2®07). New devices also
create new forms of distraction for the driver, but effects are the same. Navigating
through maps and menus and the physical manipuolatioghese devices are putting the
driver at risk of collision as their attention isad/n away from their primary task of
driving (Salvucci et al., 2007). Intentionally,ede devices were designed to assist or
enhance the driver’s performance in some way, #s the GPS and its ability to direct
lost drivers. Cell phones and MP3 players haveneldleen shown to increase
performance of driver tasks such as lane keepingspeed maintenance in situations
where fatigue is a factor (Goodman et al., 199But researchers argue that despite
these benefits, they are still outweighed by tdestracting effects (McCormick, 2003).

Jim Geschke, vice president and general manag&shofson Controls has stated
that it is inevitable that drivers will find moreaws to bring excessive information into
the vehicle. Drivers do not necessarily need palbnes and GPS devices to drive
safer, but they believe that they do. When thermftion the drivers want is not
already within the vehicle, they will bring it ilmémselves through the use of these
devices. However, Geschke goes on to say thattypisally is never done in a safe

manner. This has led to a vast increase in hunmmaiime interactions research
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between drivers and their vehicles (McCormick, 2003Today, it has become an
increasing responsibility for the automobile companto understand the cognitive
workload on their drivers, so that they can develop safest ways of meeting their
needs. If the automobile companies do not invesesearching these topics, drivers
will continue to bring in new and more distractidgvices, and potentially put everyone

on the road at risk of injury.

2.1.3 Increased Road Traffic Accidents within the Udited States

Despite the fact that population and technologywgh has spread worldwide,
the United States has been one country that héedféo keep up with road traffic
safety. The two decades between 1979 and 2000d4texen several countries such as
Canada, Britain, and Australia of having an overafiiuction in traffic fatalities of
50%, 46%, and 48% respectively (Evans, 2003; FH¥,912000). The United States
during that same period had only reduced its numbgrl18%. For 2002, the United
States saw a total of 42,000 road fatalities; 16,00 more of which could have been
saved if the country kept up with the global trendsternationally, the United States,
which once led the ranks in traffic safety durihg early 1980’s has now fallen t8' 9
place (Hakim, 2003) and is currently still decligin

In a 2003 editorial, researcher Leonard Evans gaecemparison of air traffic
and road traffic safety litigation. In his studgyans pointed out the effects of the
terrorist attacks on September™ 2001, where nearly 3,000 American peoples were
killed. America’s focus turned quickly to rid tle®untry of such a tragedy from ever
happening again and increased airline safety meadinastically (Evans, 2003). Yet,
for virtually every month since these attacks, maneericans died on the roads due to
preventable traffic accidents (NHTSA, 2002-06). aRdraffic safety has not received
nearly the amount of attention as it is deservedymarably. It has been viewed that
there is somewhat of an unbalanced litigation enlmited States safety policies, which
direct the focus away from the critical countermeas needed for road traffic safety
improvements. This inattention to prevention hasnesuggested an estimated 100,000
American lives lost over the last two decades (EBy&003). Evans also suggests that
the focus that has been made on road traffic antsdeas been more on the side of
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reduction in crash and injury severity, rather thla@ more critical aspect of accident
prevention. The United States safety litigatiomelly implies that crashes are and
will always be inevitable events, when in fact thag all, to some extent, preventable
with some underlying understanding of the situagigReden, 2004). In order for the
United States to follow the trends of Canada, Britand the like, they must first

emphasize the fact that road traffic accidents angublic health issue, which they
currently do not emphasize. This would lead toatge support for scientific research
and studies on crashes and their countermeasuvasngE2004; Nantulya and Reich,
2002; Peden, 2001).

In 1968, a researcher by the name of William Haddo illustrated the possible
opportunities for road traffic safety interventiReden, 2004). He summarized the
interactions of the human, vehicle, and environmlkefactors throughout three phases
of a crash: pre-crash, crash, and post crash. widirk produced what became the
Haddon Matrix (Figure 1), which displayed severpportunities for reducing the risk

of accidents and reducing the risk of injury or sequences of a crash.

Factors
Phase Human Vehicles and Equipment Environment
Pre-Crash Crash Information Roadworthiness Road Design and Road Layout
Prevention Attitudes Lighting Speed Limits
Impairment Braking Pedestrian Facilities
Police Enforcement Handling
Speed Management
Crash Injury Prevention Use of Restraints Occupant Restraints Crash-Protective Roadside Objects
during the crash Impairment Other Safety Devices
Crash-Protective Design
Post-Crash Life Sustaining First-Aid skill Easeto Access Rescue Facilities
Access to Medics Fire Risk Congestion

Figure 1: The Haddon Matrix

Although trends in the United States are worsenemy aspects, global road
traffic safety is just as big of a concern. Acdogdto a study performed by the World
Health Organization in 2004, road traffic injuriesnked § on a worldwide
compilation of leading causes of the global burdédisease and injury in 1990; it was
just under tuberculosis and measles. It was ptejethat road traffic injuries would
rise up to be % in the year 2020, just under heart disease anepoiar major
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depression; war was projected to H& 8These projections showed that road traffic
deaths will increase substantially in low-incomemties, even though there will be an
overall 30% decrease for high-income countries like United States and Britain
(Peden, 2004). Another study has shown that 85%llotleaths from road traffic
accidents occurred in developing nations, as we®@6 of all disability adjusted life
years (DALYS) lost (Nantulya et al., 2002). Amotig reasons for this rising burden
(in addition to the rising populations) were alsmop enforcement and regulation of
safety laws, poor public health infrastructure, @aodr access to health services. The
countries considered by Nantulya and Reich in tsaidy to be developing nations
were China, India, South America, the Western Rgand South East Asian countries.
Africa, the Western Pacific, and South East Asiaantries are currently the countries
with the highest number of deaths per 100,000 iputation (Peden, 2004). These
rates range from 19 to 30 deaths per 100,000 inlptipn.

2.2 Characteristic Factor Levels of a Collision

Within any road traffic accident, whether a sing#hicle or a multiple-vehicle
crash, there exist several different levels of ahteristic factors that make up the
details of the crash. These levels consist ofetn@ronmental, temporal, geographic,
infrastructural, vehicular, and human aspects ofaacident. In essence, each road
accident consists of a road, its surroundings, iedictims. Any detail that describes
these things, both before and after the collisisngonsidered to be a characteristic
factor of a collision. Throughout the research onamity, each category has been
shown to be of great importance, however greatephasis today has been on the
infrastructural and human factors involved (Jansbal., 2001; Noy, 1997; Rasmussen,
Nixon, and Warner, 1990).

2.2.1 Environmental Factors

Studies usually differ when it comes to what dstaif a crash site should go
into each category. This is especially true foviemmental factors. Road attributes
are occasionally included in the environmental gatg, as in the research of Janson et
al. (2001) and Shankar et al. (2004). More commdrdwever, researchers narrow

these road attributes into another category; ituatural factors (shown later in this
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literature review). The environment, in its singileform, is regarded as the
uncontrollable elements of a location that afféxa toad and its surroundings, but that
are not an actual part of the road or its surroogsti weather and atmosphere are the
prime examples of environmental factors. Theséofacare exogenous in nature, due
to the fact that they are beyond the control of pesson or policy (Chang and Graham,
1993). Atmospheric conditions of a particular segtmof road, such as whether it was
clear, raining, snowing, sleeting, or extremely ayircan all have a major impact on the
road’s overall safety. Other examples include stege of the road surface (icy, dry,
wet), lighting conditions (daylight, dark, dark bdighted, cloudy), or other
uncontrollable environmental issues (fog, smogj tam affect the vision of the driver
or the drive of the vehicle (Kim, Lee, Washingtand Choi, 2007; Yau, Lo, and Fung,
2006).

Weather and atmospheric conditions have always badrwill continue to be a
part of nature, which cannot be prevented. Yei thigects can. The presence of street
lights, dark or cloudy conditions, salt-based cheads for slick surfaces, roadway
coverings, as well as warning systems are all wyseduce the effects of the
environment (Ahmad and Rahman, 2003; Carson anchbtarg, 2000).

As with many of the other characteristic factomsyieonmental factors should
not be treated independently. In general, manyrenmental factors depend highly on
the time of day, season of the year, and other teahgactors (Carson et al., 2000;
Lord and Persaud, 2000).

2.2.2 Temporal Factors

As was mentioned in the previous section, mostatttaristic factors involved
with a road traffic accident are dependent on otiieracteristic factors. One of the
larger interdependencies is between environmemigltemporal factors (Carson et al.,
2000). Temporal factors are those which specifieterence a collision with respect to
one instance in time. Along with weather, Carsbmle mention that traffic volumes
are highly dependent on the time of day. For eXamfhe rush hours in which
individuals drive to work in the morning and fronokk in the afternoon are known for

their increased road congestion. Lunch-hour waffianother example. Therefore, the
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time of day that a collision occurs can play a ¢éapart in the analysis of traffic safety.
Late night and early morning times can also behatted to human factors such as
fatigue and sleepiness (Baulk, Biggs, Reid, van #euvel, and Dawson, 2007).
Another important temporal factor is the day of theek. In some areas, Fridays and
Saturdays may experience higher traffic volumedadweacations and recreational trips
as an example. Seasonal information may also pmbe an important factor. Colder
seasons of the months between December and Felmeayyead to greater or more
extreme environmental factors (Carson et al., 2000p fully understand the risks
involved through temporal factors, it is most béciaf to have all aspects of the time of
a crash known: time of day, day of the week, mpaihd year. The importance of
these factors cannot be overstated, as they arkethéo discovering the trends within
road traffic accidents. Predictability is a leaglifeature for accident prevention and

cannot be completed without known references irtihord et al., 2000).

2.2.3 Geographic Factors

In the context of these subcategories, geograialstors should not be confused
with infrastructural factors. Geographic, for therposes of road traffic safety, is in
reference to a physical location, and not the attarestic shapes and curves of the road
system (Van Beeck, Mackenbach, Looman, and Krudrg8]1). A simple example of a
geographic factor would be the state, county, tyrttiat a particular collision occurred
in. These factors can be as broad as the courtigrenthe collision occurred, to as
detailed as the name of the street, section, atel maimber of a particular segment of
road. In case a particular road does not haveseaifgpsection or mile associated to it,
a geographic factor could consist of a simple efee point. For example, a collision
that occurred a few blocks away from a major irgetion could be referenced as such
to that intersection, given a proper distance am@ctional heading. Therefore,
directions can also serve as a geographical fadiore of the most important
geographic factors considered today is the disoncbetween urban and rural roads
(Garder, 2005). Urban and rural distinctions clerwpwever, from county to county
and from city to city. A general rule from the WSnsus Bureau used by policy
makers is to classify urban or metropolitan ardathey contain a total metro area

15



population of at least 100,000 residents or if they economically tied to those core
metro areas. Nonmetropolitan or rural regionsthose outside a metro’s boundaries
that do not include cities with any more than 50,08sidents (Ricketts, Johnson-Webb,
and Taylor, 1998).

2.2.4 Infrastructural Factors

This category describes the physical layout ansigiheof a particular road
system. Within the infrastructural factors, thikeetwo important areas: the road itself,
and its immediate surroundings (de Leur et al. 3200 road can be designed based on
its composition and its shape. Examples of thestofs include the type of road
surface (concrete, asphalt, dirt, gravel) used @t ag the physical grade and curvature
of the road itself (straight, curved, level, uphdbwnhill). Traffic lines are also a key
to the infrastructure. These lines help designajbt-of-way policies by directing
traffic into their designated lanes, showing whareehicle can pass other vehicles, or
where the vehicle can safely make a turn (Flah20®3). Surface infrastructure can
refer to the original designed conditions of thaddas the above examples), but more
importantly it can refer to unintended conditiongls as potholes or worn out traffic
lines. Potholes can increase damage to the velibieh may in turn cause the vehicle
to lose control and wreck with other objects, whsravorn traffic lines can lead to
driver confusion (Karlaftis and Golias, 2002). Tiype of road (US highway,
interstate, city road, on ramp, off ramp) and e$ation to other roads (intersection,
merging lane, alley, driveway) are other importanftastructural factors of a road
segment (Van Beeck et al., 1991).

Apart from the road itself, the road’s immediatereundings are also factors
when considering road traffic safety (Peden, 200éollisions occur at the edge of a
road, then the infrastructures of these areasnapertant as well. For example, the side
of a road may consist of a ditch, trench, sidewalkdian strip, or a fixed object; all of
which play a critical part when considering the anpof a collision (Yamamoto and
Shankar, 2004). Road signs and traffic controésalten considered to be significant
factors of a location (Peden, 2004). Road signe dirivers the ability to predict the

physical infrastructure or important events ahehthem, which allow them to better
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prepare their actions. Traffic controls help teedt traffic, whether by a sign (STOP,
YEILD, CAUTION) or if there is a light that changeaccordingly with traffic.
Although these controls often help traffic flowgthmay be misused if people choose
to ignore them or if the controls are not functimmiproperly (Escalera, Moreno,
Salichs, Armingol, 1997). Signs and controls tlaa¢ placed in poor areas, not
functioning properly, or hidden from view can leaddriver to misinterpret road and
traffic conditions ahead of them, which can greafffgct the overall safety of the driver
and other vehicles on the road.

One of the reasons that infrastructural factorsngy|aso much attention in
research today is that they are factors that caraltered (de Leur et al., 2003).
Geographically, locations cannot change; a roadoimson County will always be in
Johnson County, unless, of course, the name chandese is a function that is
constantly changing, but the way in which it chagannot be altered; a person can
avoid a certain road at a particular time, but tleapnot avoid that particular time.
Roads are always being influenced by their enviremthand although they can reduce
the effects of if, they cannot alter the environtaérfiactors. The infrastructure of a
road, however, can be altered. It may not alwayghle most cost effective method, but
preventative measures can be made by using roattenance to fix pot holes and lane
markings or by adding or changing road signs aaffi¢rcontrol units to better direct
traffic. Roads can even be widened or moved ttude more lanes in the case where

traffic flows become too great (Noland, 2002).

2.2.5 Vehicular Factors

For every roadway location there exists environtaleriemporal, geographic,
and infrastructural factors, regardless of whetbemot an accident occurs at that
location. Every location has a geographic refeegmaint, physical characteristics, and
is influenced both by time and the environment sumding them. However, the
vehicular and human factors are the characterisiasare externally brought into the
location influencing traffic safety. The vehicldaps a major role in road traffic
accidents, and several crash-influential factons lea attributed to it. These factors
may include the age, type, make, and body of tlnecles (Evans, 2004). Older vehicles
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may have engine issues that cause the car to dleeimiddle of a busy interstate, or
worn tires may lead to a dangerous blowout, fomgpia. Each vehicle on the road has
its own unique physical limitations that may be esd@ed due to severe environmental
problems or bad infrastructures (Peden, 2004). a8spnger car may not be able to
function well in conditions where ice covers a s&theof road, whereas a sports utility
vehicle that can withstand such conditions may havendency to roll over in steep,

curvy road conditions. Another example where ptajisvehicle factors plays a part is

in situations where a wreck occurs between largd amall vehicles. In these

situations, the smaller cars are at greater riskgplg due to its size disadvantage
(Evans, 2004). Therefore the size and currentitiomdof each vehicle can turn out to

be a major cause of a road traffic accident.

Additional vehicle factors that are of importarees the lighting and warning
systems of each automobile (Zhang, Huang, RoettMgng, Wei, 2006). In dark
settings, proper lighting is crucial for drivers physically see the road and its
surroundings. If headlights are not in working @ition, not only is the driver’s vision
impaired, but other vehicles on the road may nettee vehicle as well or at all in dark
conditions. Brake lights and turning signals asedito warn following vehicles that
the vehicle will be making a sudden departure fribwir current speed or direction.
Without these properly working devices, vehiclesynf@l to become aware of these

changes and cause a rear end or other type ofeatcid

2.2.6 Human Factors

According to Evans in 2003, the two most importéattors in road traffic
safety are the individual driver’s behavior and trehavior of every other vehicle on
the road. Human factors, in the context of roadfitr safety, are the factors that are in
the direct control of the driver as well as the soeral, physical, or psychological
characteristics of the driver (NHTSA, 2008). Adyuoerformed in 1980 proved that
90% of road traffic accidents were attributed tomlam factors, either directly or
indirectly through other factors (Sabey and Taylk®d80). The most common personal
characteristics of a person consists of their ggader, race, weight and overall health
conditions. Other personal characteristics cath&rdescribe the health and state of a
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person, such as any physical disabilities they heaye; vision and hearing impairments
are examples of these. The level of fatigue aedmhess of the driver is also a major
concern (Baulk et al., 2007). The actions perfatri@ not performed) by the driver
are also key human factors. For example, obeyaffjd laws, speeding, wearing a seat
belt, or driving while under the influence of drugs alcohol are all types of actions
that the driver has direct control over, which nmrapact the occurrence or severity of a
collision (Janson et al., 2001; Rasmussen et @90)L

In general, human factors can be the most diffitnimeasure or determine at
any particular crash site (Sundeen, 2007). Pelsdmaacteristics aside, the actions
that a driver was engaged in before the collisi@y tme unclear and may depend on the
driver's own interpretation of what happened. Yatyer distraction and inattention
are still considered as the root cause of manysiofis (Strayer et al., 2001; Sundeen,
2007). Talking on cell phones, putting on makeaatjng, adjusting the radio, grabbing
something from another seat, or looking at mapsairexamples of driver distractions
and are considered to be human factors. Numeresgarchers, such as Sheridan
(2004), Horrey et al. (2006), and Neyens et al0{d0have shown driver distraction
and inattention to be any action that diverts theed’s main attention from the road
and it's surrounding causing a decrement in draweareness and road traffic safety.
Cell phones normally get the most attention frothuaan factors standpoint, simply
because they are one of the easiest aspects tareg&indeen, 2007). According to
his study, Sundeen explains that it is becauseheif tvisibility that cell phones get
spotted and remarked as an important safety hazardthe other hand, there are now
devices that exist that are not as visible asp®dnes that tend to distract drivers, such
as navigation devices, PDAs, and MP3 players (Picge2004; Salvucci et al., 2007).

Much like road infrastructure and vehicles, hunfantors gain a generous
amount of attention due to their preventability.urian factors, more than any other
factor, are under the control of the driver. Bynply altering their behavior, drivers
can easily avoid a number of instances where thightrhave found themselves in
danger of collision. The issue with these measweshe other hand, is the willingness

of drivers to actually alter their behaviors (Rumkg88).
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2.3  Statistical Analysis of Road Traffic Safety

The use of statistical studies of historical, numedata has become increasingly
popular in many areas of study over the past feeades, including not only crash
analysis, but also economic, biological, and saguaal applications (Anastasopoulos
et al.,, 2007). The main attraction to the analgdipast data is in its ability to unlock
potential methods of predicting the future or infey the past based on historical
trends. By quantitatively determining these trerittbecomes easy to understand the
relationships between one or more factors. Inwbdd of statistics, the main method
for determining these trends is the use of regoessnodeling (Al-Ghamdi, 2002;
Berhanu, 2004). Regression, in its broadest sesaseway of developing a “best fit”
model that encompasses a number of independengratpry variables and a single,
dependent response (Lewis-Beck, 1980).

The decision about what data should be considerdzkteither explanatory or
response depends heavily on what the experimerdatswto analyze. The answer is
not always apparent. In the case of crash analysmsresponse might be the number of
crashes that occurred within a certain area ancexipdanatory variables could be the
time of day, road traffic volume, age of the driver any other numeric data gathered
from the crash site (Anastasopoulos et al., 200Pgrhaps the model would show that
an increase in traffic volume leads to an increasgrash frequency. Using regression,
it becomes simple to determine which numeric vdeshn a process significantly
affect the numeric response being observed. Homeliere exists a vast number of
unigue models that can be applied to historicahdafhoosing the best model is the
key to reliable results (Lord, Washington, and lv@005). Each regression model
should have a method for evaluating the goodnesi-tf the data, which will in turn
determine whether or not the model is feasiblepofrly fitted model has little or no
predictive capabilities, and could be considererdifically useless (Saccomanno,
Nassar, and Shortreed, 1996). Deciding which regsasmodel is best for any specific
data depends on many underlying assumptions abheutidta (Lord et al., 2005). The
first of which is the nature of the response. dependent variable, or response, of the
model is assumed to be a random variable. Theaatuthe response, and the model

itself, can then be defined by the type of randoamiable the response is and the
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probability distribution assumed by the model. Thest common type of regression

model used is that of a linear regression modelra/liee independent and dependent
variables are assumed to be continuous randomblasidBerhanu, 2004). Within each

model there are two values for each response:expected value of the line and the
true value of the data. The errors, which aredififerences between the two, are then
minimized using the method of least squares. Rsgra uses this method to change
the parameters of the linear model in such a way time error terms are as small as
possible. The result of minimizing the errors isavends up being the “best fit” model

(Lewis-Beck, 1980). Also, it is assumed in all retsdthat these error terms are
normally distributed; a.k.a. each error term isependent of any other error term

(Jones and Jgrgensen, 2001; Kim et al., 2007).

However, the assumption of continuous variable®ften times inaccurate,
especially in crash analysis. This has led reseascto find better models for their
analysis. In some studies, the assumption of ooatis variables is addressed (Al-
Ghamdi, 2002; Bernahu, 2004; Kim et al., 2007).r these studies, the assumptions
were relaxed so that independent variables couldiderete or even binary. In 2001,
Jones et al. proposed a model for crash data ifNthrevay. For their analysis, the
response variable was binary, determining whetheash was fatal or not. Also, their
model consisted of several other binary and cootisundependent variables. For this
to work, Jones et al. developed a logistic regoessnodel, which relaxes the model
assumptions and allows the response to be binane§let al., 2001).

Kim et al. preformed a similar study in 2007, manglthe types of crashes
occurring in Georgia. Crash types such as angleswipe, rear-end, or single vehicle
crashes were analyzed using the logistic model (Kiral., 2007). The logistic model
is very similar to that of the simple linear modeut the change in assumptions also
leads to a change in model parameter estimatione Ky feature that makes logistic
regression attractive is its ability to calculate adds ratio, which allows the
experimenter to interpret the change of an evdik&diness to occur given a change in
the independent variable described by that odds (at-Ghamdi, 2002).

Another aspect of these two logistic regressiomlistiis that the data used for

the models were hierarchical in nature. This efier the fact that there are people
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within each vehicle, within each crash. It is sefeassume that the responses between
passengers in the same vehicle are correlatedeaith other, as are responses between
vehicles that are within the same crash. This dookan that there is a violation of the
normally distributed error terms in these experitagrbecause they are not fully
independent. Therefore, these models were adjustexich a way that data was
clustered among passengers in the same vehicleamdes in the same crash. Then,
each cluster of data was treated as independehis i3 called a hierarchical logistic
regression, and works around the assumption of albyndistributed errors (Jones et
al., 2001; Kim et al., 2007).

Another case where the continuous random varialaslg mot be the best choice
for a regression model would be involved with resges that represent a count or a
frequency. A response that represents a countfoggaency, such as the number of
crashes in a particular area per year, is necéssarpositive and discrete number
(Anastasopoulos et al., 2007). Also, many stutlieage shown that crash occurrence
can be more realistically described as a Poissmtess. Poisson is a discrete
probability distribution that represents the prabgbof a number of events occurring
during a fixed period of time, such as customeivals in a store per hour (Abdel-Aty
et al., 2000; Bernahu, 2004; Lord et al., 2005).heéW regression takes on responses
that are Poisson distributed, the model must bestelil. This is done by transforming
the responses using the logarithm of each respomke. explanatory variables are left
alone, as only the response is transformed. Freme bach independent variable is
treated as usual, where the regression technigempats to find the best fit linear trend
of the explanatory variables and log transformespoase (Abdel-Aty et al., 2000).
Other studies have used other unique regressiorlisiothanging the type of response
and underlined probability distribution. NegatBmomial regression, which is used to
data similar to Poisson regression, is used oftearmthe underlying assumptions of the
Poisson are violated (Bernahu, 2004). A 2007 stsdgwed the use of a Tobit
regression model for crash rate analysis, simacrash frequency analysis but with
different underlining assumptions to the model. ukded by James Tobin, Tobit

regression was originally used for economic analysut was later applied to crash rate
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analysis. Its model contains a method of censatiegrange of the dependent variable

by clustering of data, rather than data truncatfmastasopoulos et al., 2007).

2.4 Roadway Safety Audits

The techniques to evaluate road traffic safety dbhave to be limited to the
evaluation of road traffic crashes. The preredgaior this type of technique is that a
crash actually occurs. But since the biggest isgille road traffic safety today is the
avoidance and reduction of crashes it is best id nother method that does not
consider crashes having already occurred (Evan63)20 The proactive approach
would be to evaluate the roadways before a poteatesh even occurs. A roadway
audit has the ability to catch troublesome aspedtghe road, such as potholes,
infrastructure, signage, and other aspects thatqoatentially lead to road traffic un-
safety (Allsop, 1997). In their 2003 study, de Letial. proposed a method to formally
evaluate not only currently existing roads, bubaisads that have not yet been built.
The ability to look at and evaluate a road systanits planning process can lead to
huge cost savings in the future (de Leur et al0330 Putting in the effort ahead of time
prevents changes to have to be made later on wiemfrastructure turns out to be
weak. Dwight Horne, director of the Office of Highy Safety Infrastructure states
that the redesigning of a road is much more cdsig¥e than the reconstruction of a
road (Horne, 1999).

The process of a roadway audit is performed by dl wained, multi-
disciplinary team of auditors. The auditors wonklependently of the road engineers
and project managers. They can evaluate roadmsygsite any of five stages of design:
the feasibility study, draft design, detailed desigre-opening, and post-opening of the
road system (Allsop, 1997). The auditors then duent their finding, which include
the potential safety hazards, in a documented ftirat goes to the roadway project
managers. At this point, the project managers uatal the findings and make any
necessary changes they feel applicable (Horne,)198&hough it is not a guarantee
that all changes will be made, the roadway audiiwed each of the safety measures to

at least be fully considered.
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CHAPTER Il - DATA DESCRIPTION

This study uses data collected from the state idbAsas during the period of
2002 through 2004. The Arkansas State Highway arahsportation Department
(AHTD) has allowed the use of two essential databas order to study and analyze
roadway traffic accidents throughout the state.e Tibst database is referred to as the
crash database and contains a log of all vehidshas reported or collected by the
Arkansas State Police during this time period. FEa@sh is described in detail within
each log, containing information about all persorshicles, and conditions involved
with the accident. The second database is knowhea#\rkansas roadway inventory
database. The details contained in this databedaip to the intricate road systems
within Arkansas, listing every major and minor rpatbng with the geography of each
road segment. Together, these two databases woallathe necessary information

needed to support the objective of the study.

3.1 Collecting Crash Data

Crash data consists of a number of descriptiveacheristics associated with
any particular road traffic accident that has besmrorded in some fashion. The level of
detail can vary substantially, depending on theasibn and who is collecting the data.
In most general cases, crash data is collectedtyppicfederal officials who are present
at a crash scene. Whenever a crash is reportetharmoper authorities are notified, it
is generally required by law to document and logtipent information about the
accident. Documentation is usually performed Ibyn§ out forms or inquiry sheets,
allowing the information to be further recorded adhived later. Traffic accidents
can vary substantially in size and severity, whialises some accidents to require more
or less information. Some smaller, single vehexteidents may not appear to need a
largely detailed report to explain their cause.hédt larger accidents require enough
information about the crash in order to determime ¢ause of the wreck, perhaps for
insurance or legal reasons: who was involved, dreit was due to driver error, road
issues, weather, or any number of factors, etc. erCune, most agencies have
developed a standard amount of information to bmudwented for each traffic accident.
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For the state of Arkansas, all city and statecddfs are required to record
several pieces of information at each crash sédled variables in this study. The
information recorded includes several elements efnmporal, environmental,
geographical, infrastructural, vehicular, and hurfeators as described in the literature
review. All officials are required to fill out aswuch information for every traffic
accident as possible, regardless of the magnit@ideecaccident. After documentation
is complete, the crash information is sent to tHeTR to be logged into the crash
database.

At the AHTD, all the information from the crash mepis uploaded into the
database and checked. Then, using that crash ttiatalepartment generates several
other important pieces of information. Many imp@mt crash variables within the
database are not gathered directly at the timbettash’s initial investigation. This is
usually due to the fact that some information mai/bre readily available to the city or
state official when filling out a crash report. &®bdetails such as the average daily
traffic (ADT) or whether or not it is located in amban or rural city can be determined
after the initial crash report, as long as a speaifreet name and reference point are
listed. Passenger ages can also be generatecab#tok AHTD, as long as their dates
of birth are recorded. The details of this databasd the variables included within it

is covered more thoroughly in the following section

3.2 Crash Database

For every roadway traffic accident in the stateAdkansas that is reported and
investigated, its details are entered into thelcdetabase. There are 82 characteristic
pieces of information for each entry that is enderdgo the database. Instead of having
only one entry per crash, the data takes into aucdliat each crash contains a
particular number of vehicles and that each vehodatains a particular number of
passengers. Because of this hierarchical like farwery individual person involved
with the accident gets an entry in the databadee ififormation variables in each entry
reflect elements, or factors, describing the detailthe crash site in terms of temporal,
environmental, geographical, infrastructural, velac, and personal attributes. Along
with these factors, the database also containgnrdtbon about the outcomes of the
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accident. The database is divided into three sestof data, relating to the levels of the
crash hierarchy: Crash, Vehicle, and Person levElkshicle and Person levels pertain
specifically to the vehicular and personal factoespectively, as described in section
2.2 of the literature review. The Crash level, boer, is a much broader category.
The temporal, environmental, geographical, andastfuctural related factors are all
contained within the Crash attribute.

The crash database includes a total of 136,164 elatries over the three year
span among all of Arkansas’ 75 counties and 92@<cit Table 1 shows a general

breakdown of the number of data entries throughioeithree years.

Table 1: Arkansas State Highway and TransportationrDepartment Database

2002 2003 2004 Total

Crashes 70,903 70,912 74,059 215,874

Vehicles 128,727 127,216 133,204 389,147

People 190,296 187,225 196,428 573,949

Average Number of Vehicles per Crash  1.803

Average Number of Passengers per
Vehicle 1.475

3.2.1 Crash Level

As was mentioned earlier, every road traffic aentdcan be considered as a
single crash involving vehicles involving peopl&.hese three things form a natural
ordering hierarchy, with the Crash level being bineadest level. Because of this, the
Crash level contains the bulk of the informatioeamreled within the crash database.
The entire database covers over 80 distinct chenatits (called variables) that detail
the events and conditions of the crash site andtagh itself. 43 of these categories
are considered to be within the Crash level. Ciastel, in terms of this database,
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refers to any element of the accident that dessrihe crash as a whole, including its
outcomes. For the most part this includes the tealpenvironmental, geographical,
and infrastructural details of the crash scene escribed in the literature review.
Examples include the time of day, weekday, roadaser conditions, weather, city
name, road type, junction type, etc. All of thesegiables can be used to describe the
factors that may have potentially led to or evensea the accident. However, there are
a few Crash level variables that are not considaydze any of these four ‘contributing’
factors, because they detalil the specific outcoaigbe crash. An outcome refers to
the type of collision that occurred, the severifytloe crash, or even the number of
fatalities. These variables are not contributiagtérs to the crash; instead they are
resulting circumstances of the crash. A compleiaet of Crash level information
variables is shown in Table 2, along with a brieScription of the variable labeled as
temporal, environmental, geographical, infrastruety or outcome Two variables are
labeled aseference and their only purpose is identifying a specdrash, assigning the

crash and the form used by the city or state @fiaispecific code.
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Table 2: Crash Level Information (Variables)

Variable Name Description Example Values Type
CRASHDATE Date of Crash (encoded) 37260 Temporal
WEEKDAY Day of the Week FRI Temporal
CRASHTIME Time of Crash (encoded) 1.520833333 Terabo
ATMOSPHERICCONDITIONS1 Atmospheric Conditions Clear Environmental
LIGHTCONDITIONS Light Conditions Daylight Environméal
ALCOHOLINVOLVED Was Alcohol Involved? N Environmegit
RURALURBAN Accident Locale Rural Geographical
COUNTY County Union Geographical
COUNTYNO County Number 70 Geographicgl
INCITY Crash in City? N Geographical
CITY City Hamburg Geographical
DISTANCEFROMNEARESTCITY | Distance from Nearest City | 5.4 Mi Geographical
DIRECTIONFROMNEARESTCITY| Direction from Nearest City S Geographicdl
ROUTE Road Route Number 275 Geographidal
SECTON Road Section Number 1 Geographidal
LOGMILE Road Logmile Location 180 Geographicd
ATINTERSECTINGSTREET At Intersecting Street? N Gegrhical
REFERENCEPOINT Reference Point (Any Text) Camp Road Geographical
Distance from Nearedt
DISTFROMNEARESTINTERSECT] Intersection 1.8 Mi Geographical
Direction from Neares
DIRFROMNEARESTINTERSECT | Intersection N Geographical
Railroad Identification
RAILROADIDNUMBER Number 4344570 Geographical
ROADSURFACECONDITION Road Surface Condition Dry racgtructural
ROADSYSTEM Road System Type State Highway Infracstreal
ROADSURFACTTYPE Roadway Surface Type Asphalt Infiactural
ROADWAYALIGHMENT Roadway Alignment Curve Infrastrugral
ROADWAYPROFILE Roadway Profile Grade Infrastructurp
In  Construction/Maintenanck
CRASHINCONSTZONE Zone? N Infrastructural
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2

TRAFFICFLOW Traffic Flow Not Divided Infrastructural
NUMBEROFLANES Number of Lanes 2 Infrastructur
RELATIONTOJUNCTION Relation to Junction Driveway ftastructural
TYPEOFTRAFFICCONTROL Type of Traffic Control Stojigd Infrastructural
CONTROLFUNCTIONING Control Functioning Properly]  De& Functioning Properly Infrastructura
TYPEOFCOLLISION Type of Collision Rear End Outcome
FIREOCCURRENCE Occurrence of Fire? N Outcome
HITRUNCRASH Hit and Run? Y Outcome
CRASHSEVERITY Crash Severity (1-5) 5 Outcome
Number of Fatalities (Severity
NUMBEROFFATALITIES 1) 0 Outcome
Number of Injured Persons
NUMBERIFINJURIES (Severity 2-4) 0 Outcome
NUMBERINVOLVED Number of Persons Involved 1 Outcome
NUMBEROFVEHICLES Number of Vehicles Involved 1 Oalne
INVESTIGATINGAGENCY Investigating Agency Arkansasa® Police Outcome
Crash Number (Year ¢t
CRASHNUMBER reference #) 200200001 Reference
FORMCODE Form Code 07/3/021:47:06PM,Station11 Rafee

The variable ALCOHOLINVOLVED is labeled as amvironmentalfactor.

may seem intuitive that this variable be consideascahumanfactor, due to the fact

that it is the driver’s choice whether or not tavdrwhile intoxicated. Although this is

true, the database contains a similar, more descripariable within the Person level
data. The difference is that the variable ALCOHQRIDGIMPAIRMENT pertains

only to the person driving the vehicle.

The reas®bCOHOLINVOLVED

considered as a Crash level characteristic is lsec#tudoes not pertain to a single

individual. A drunk driver on the road affects eyody else on that road. As far as a

sober driver is concerned, he has no control overdrunk driver in the other lane.

Therefore, if alcohol was involved with any of thersons or vehicles within a crash, it

is treated as just anothenvironmentafactor or obstacle.

In order to avoid a convoluted database, the AHIED developed a method to

standardize several of the variables in terms eirthialues. This makes sorting and
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searching through the database much easier. Tit&lethat most of the variables
have a certain range of values that they can betiig the variation of data that could
be entered. For example, the values for the veri&OADSURFACECONDITION

can only be Wet, Dry, Ice, Sand, Dirt, Oil, Othend Unknown. This helps eliminate
the variation between the terms Ice, Icy, SlickpZem, and Slippery, which all mean
essentially the same thing. Other variables, RKUTE or REFERENCEPOINT may
have to be entered in as any text, just becauge #re so many different possibilities

for those values.

3.2.2 Vehicle Level

The next level in the AHTD crash database is thkidle level. The data within
this level refer to the attributes assigned to eaadficle that was involved with a certain
accident. It includes 17 of the total 80 crashaldes within the database. The details
described within this data include many factorsulibe type and condition of each
vehicle, as well as the actions that the vehicle ®agaged in prior to the accident. A
list of all 17 variables within the Vehicle leved shown in Table 3, along with a brief
description and example entry. The variable VEHEBIUMBER is a number that
references each vehicle within a crash. It hapurpose other than as a reference.

The variable DRIVERSCONDITION appears to be mispthén the Vehicle
level. This variable describes the conditionshef driver of each vehicle as reported by
a state or city official in the official crash rapo Conditions such as bad eyesight, bad
hearing, or drowsiness are documented in this bbkria These are clearly human
factors, regardless of whether they are contradlddyl the human or not. However, for
the purpose of staying consistent with the datglthsevariable was left in the Vehicle

level.
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Table 3: Vehicle Level Information (Variables)

Variable Name
VEHCILENUMBER

CONTRIBUTINGFACTOR1
VEHICLEACTION
HARMFULEVENT

COLLISIONWITHFIXEDOBJECT

VISIONOBSCUREMENT

DRIVERSCONDTIION*

VEHICLEDIRECTIONOFTRAVEL

VEHMAKE

VEHICLETYPE
VEHICLEMODEL
VEHICLEBODY
NUMBEROFTRAILERS

DAMAGECLOCKPOINT
NUMBEROFOCCUPANTS
PRIORVEHICLEDEFECTS

Description
Vehicle Number

Contributing Factor

Vehicle Action

Harmful Event
Collision with Fixed
Object

Vision Obscured?
Driver's Condition
Vehicle
Travel
Vehicle Make
Vehicle Type
Vehicle Model
Vehicle Body
Number of Trailers

Direction of

Vehicle Damage
Clockpoint
Number of Occupants
Prior Vehicle Defects
First

Harmful Event

FIRSTHARMFULEVENTOCCURRED Locale

Example Values
1
Careless /  Prohibite
Driving
Going Straight
Motor Vehicle in Transpo

Fence
Not Obscured
Appeared Norina

N
Nissan
Passenger Car
Altima
4 Door

0

Front
1

No Defect

On Roadway

[®N

*the condition of the driver is a human factor, bwill remain in the Vehicle Level for

consistency
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3.2.3 Person Level

The last level within the ASHD crash database «issof the Person level.
Here, all the data that is recorded can be rel&tedach individual person that was
involved with a particular crash. The exceptionghis are the cases in which women
who are pregnant are only recorded as one indiVidutach happens on occasion. The
information and details related to each individoah be used to detail their personal
attributes, such as age, gender, race, name, aid hbme state. Other pieces of
information that are considered to be in the Petswal correspond to the location and
action of each person within the car, such as geteng who was driving and where
the passengers sat. Another important human fémtated in this data describes each
passenger’s restraint type, which is to say whetinarot they were wearing a seat belt.
Driver’'s may also be drug or alcohol tested after accident, in which case the results
are also documented as a Person level factor. eftiee list of 20 variables within the
Person level is shown in Table 4, along with afbdiescription and example for each
variable.

Some variables, such as INJURYSEVERITY, CITATIONMBERL,
CITATIONNUMBERZ2, and AIRBAG may be considered asaricome. It is true that
all of these variables are important outcomes ofaalway traffic accident. However,
for the sake of this study, and staying consistgtti the database, these variables will
remain as personal factors. Although they areeddeutcomes, each of these variables
describes the condition of every person involvedthe crash, and is therefore a

personal attribute.
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Table 4:

Person Level Information (Variables)

Variable Name
PERSONNUMBER
PERSONTYPE
SEATPOSITION
RESTRAINTCODE
AIRBAG

EJECTIONCODE

RACE

SEX

AGE

INJURYSEVERITY
PEDESTRIANLOCATIONACTION

NAME

CITATIONNUMBER1

CITATIONNUMBER?2
DATEOFBIRTH
LICENSESTATE
LICENSETYPE

BACTESTED

BACCRESULT
ALCOHOLDRUGIMPAIRMENT

Description
Person Number
Person Type
Seat Position
Type of Restraint

Airbag Details

Ejection Code
Race
Sex
Age

Injury Severity (1-5)
Pedestrian
Action

Person Name

Citation Type

Citation Type

Date of Birth (encoded)
License State

License Type

BAC Tested?

BAC Results
Alcohol/Drug

Impairment

Location

Example Values
1
1
X
Lap & Shoulder Be
Non-Deployed
Airbag
Not Ejected
B

34
5

0
(blank

issues)

for privag
Reckless/Careless
Driving
Suspended License
25500
AR
DL
N
0
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3.3  Road Inventory Database

Like most states, Arkansas is home to a compléwaor& of road systems. The
variety of roads in this network is vast, as itlutes many hundreds of miles of
interstate, State highways, U.S. highways, counigds, and city streets. Figure 2
shows an aerial map of the state of Arkansas whkidws all the major road systems
within the state; including interstates, State kigis, and U.S. highways.

Due to the complexity of this network, a roadwayentory database was
created to keep a record of all the different readments. More importantly, this
database keeps a record of the smaller subsedfe®ch road. Many roads span from
one end of the state to the other, changing in, skape, condition, and jurisdiction.
To overcome this, road surveys have been condumtgtie AHTD to break down all
major interstates, U.S., and State highways inRpate, Section, and Logmile. Every
highway and interstate is first broken into sevelage route segments that are
individually numbered; then that route is furtheoken into several smaller sections.
Finally, each section of road is broken into a ldgmwhich is in reference to the
posted mileage that surrounds these road systefRes. an even more detailed road
segment, the logmile reference is reported in hexdliths of a mile. Each set of Route,
Section, and Logmile references can be viewed @sique address for the location of

these road segments.
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Figure 2: Arkansas State Highways, U.S. Highways,mii Interstate Systems

Unfortunately, mile markers are only a commoditgdigor major road systems like

these highways and interstates. For roads withiiascand counties, including back

roads, defining a unique address can be difficGlounty roads and city streets must be
identified first by the street name or county raagdmber. Because of the lack of

mileage markers, these roads are generally notebrakto any smaller sub-sections.

They can, however, be identified using a directiasna reference, such as North Main
Street and South Main Street.

In total, the AHTD roadway inventory database corgaver 115,000 identifiable road

segments between all road types for the years #i@2gh 2004. These road sections
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can range anywhere from 0.01 miles in length, tt axeer 400 miles in length. Not all

of these 115,000 road segments are unique, howe@sre large road segment that
spans 100 miles in length can be one entry, whetledissame segment can be broken
into 100 smaller one mile sections that serve &ssHparate entries. The point here is
that many road sections are duplicated two, thoeenore times. The data from 2002
actually contains over 136,000 road segments, mydretause several larger road
segments were broken down into several other smadbel segments. Both 2003 and
2004 contained a little over 115,000. A breakdaMithe number of segments within

each type of road system is displayed in Table 5.

Table 5: Arkansas Road Inventory Breakdown of Roadsegments

Road Segment Type 2002* 2003* 2004*
Interstate 2,256 1,001 1,000
U.S. Highway 7,130 5,083 5,098
State Highway 16,218 11,261 11,309
County Road 57,725 48,365 48,428
City Street 52,200 49,524 49,473
Frontage/Other 633 553 553
Total 136,162 115,787 115,86(
Average Length 0.869 0.857 0.857
Standard Deviation 5.613 5.905 5.902

*Table values in units of road segments

Each entry within the roadway inventory databaserseto one specific segment
of road within Arkansas. Within each entry, theéadlse contains 50 descriptive pieces
of information about the road segment. Much ok tliformation is categorical in
nature, such as the type of the road system, mstifonal class, population group, and
surface type. The total list of descriptive vahebfor road segments within this
database is shown in Table 6. Along with the \@eaname, there is also a short

description of what the variable describes andxamgple for each one.
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Table 6: Arkansas Road Inventory Database Variables

Variable Full Name/Description Example Values

DSTNO District Number 12

CONTY County Number 75

ROUTE Route 65

SECTN Section 13B

LMPTR Beginning Logmile 0.17

ENDLM Ending Logmile 21

RDLEN Segment Length 1.93 Miles

SEQCN Sequence Number Z

RECON Record Control Mileage

RTFIX Route Prefix Interstate

GOVCO Government Control Municipal/City

DOMAN Domain State Agencies

POPGR Population Group 2,499 or less

URBAN Rural/Urban Area Code Rural

URBAC Urbanized Area Code Fort Smith

PLACE Place Code Texarkana

FNCLA Functional Classification Interstate-Rural
National Highway  System/FundingNational Highway

NHSYS Eligibility System

SYSTA System Status Open to public travel

SPSYS Special System Airport Road

ADT Average Daily Traffic Volume 2000

ACCES Control of Access Full control of access

Frontage left of maif

FROAD Frontage Road lanes

TYOPR Type of Operation One way

NOLAN Number of Lanes 2

SURTY Surface Type Code Bituminous Concrete

BUILT Year Built 1956
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RECONS
MEDWD
TYDEV
LNWID
SURWD
RSHOS
LSHOS
RSHOW
LSHOW
CURBS
ROWWD
TERAN
NAMES
RDWID
EXLAN
TROAD
RAMPD
YRADT
ROUGH
PAVCO
CONNC
TFILE

APHN

Year Reconstructed
Median Width
Type of Development
Lane Width
Surface Width
Right Surface Shoulder
Left Surface Shoulder
Right Width Shoulder
Left Width Shoulder
Curbs
Right of Way Width
Terrain
Railroad Information
Roadway Width
Extra Lanes
Type of Road

Ramp Designator

Year ADT was last measured

Roughness (IRI)
Pavement Condition
Intermodal Connectors

Type of File

Arkansas Primary Highway Network

1976
8 Feet
Urban, Fringe
7 Feet
12 Feet
Bituminous Concrete
Bituminous Concrete
12 Feet
8 Feet
No Curbs
8 Feet
Flat
Union Pacific
40 Feet
Turn Lanes
Main Lane
S
2002
142
4
Major Airport
County Road
National Highway

System
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CHAPTER IV — STATISTICAL ANALYSIS

4.1  Methodology of Statistical Analysis

For this study, statistical modeling was used sbingate crash occurrence,
frequency, and severity. For the estimations ashkr occurrence and frequency,
Poisson and Negative Binomial regression modelweed to fit roadway and crash
data. Crash severity was analyzed through a Bihagystic regression model. Each
model takes into account a number of potentialof@ctrom both the Arkansas roadway
inventory database and crash database. In thewiolj sections these models are
looked at in detail, including model assumptiora,gmeters, and estimation processes.
The section concludes with an analysis of modeitétions.

4.1.1 Crash Occurrence and Frequency

The first task for this study was to define angedep a mathematical model that
manages to predict crash occurrence. In doing tEgain potential crash and road
factors are built into the model and verified fagrsficance after the model has been
tested for goodness of fit. The methodology behimd test revolves around certain
assumptions in which the crash and road data isdbak the case of crash occurrence,
the assumption is that the response is either arpior a count variable. As was
mentioned earlier, the type of response is a keyneht in defining a model. Typically,
a crash occurrence model that is binary revolvesrad the fact that there was a
specific driver and vehicle situation (with corresding environmental, temporal,
geographical, infrastructural, vehicular, and hurfetors), which resulted either with
or without a traffic accident; basically, and evesturred or it did not. However, this
requires data on every single vehicle on any rdadng one time. A more realistic
model, and the model used for this study, revolaesund crash frequency on road
segments. This approach requires a response shaf count type, meaning the
response is a positive, discrete random variabd torresponds to the number of

crashes on any segment of road during a specifiesl period.
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To this end, the main assumption made for thigigorof the study was that
crash frequency follows a Poisson distribution.agbr frequency is a number count,
which means that it needs to be modeled as a tkscaeadom variable. The Poisson
distribution is one type of discrete probabilitysdibution, and is used to describe the
probability of a specific number of events occugrimithin a particular frame of time.
It is also assumed that each event in the Poisstribdition is independent of any other
event. The model's assumptions match the natuash occurrence quite well, and
therefore Poisson is regarded as a popular methadalysis. Also, computation and
solution inference is made quite simple by this glod

Because the response variable under study is &sstionfollow the Poisson
distribution, it is only natural to first apply th@ata in a Poisson regression model.
Crash frequency acts as the discrete responsebignahereas any number of variables
can make up the independent and explanatory vagablhe independent variables are
not limited to being continuous in nature, suchHesgth of the road segment, or age of
the driver; the variables could also be binaryategorical in nature. Depending on the
type of variables set into the Poisson regressiadeal) estimations may vary. The
following paragraphs step through the general nudlogy behind the Poisson
regression model.

It is important to note that the Poisson regrassimdel is an extension of the
family of models called Generalized Linear Model3his is because the model is
trying to adapt a linear relationship between #drs and the response, as was simple

linear regression. Simple linear regression takedorm

Y =B,+Bx+¢ ) (1

wherex; represents thigh explanatory variable, given the respons&ipaindf,and s,

are the estimated parameters of the intercept ke $or the best fit line. Ideally, if
there was a true relationship between explanatariables and the response, the model
would be exact and there would be no need for ear éerm. Realistically, however,
there is always variation from the “true” relatibs, and therefore must be

compensated through an error term. The final terthe model represents this error,
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which is the mathematical difference between thgeeted value of the response and
the actual value of the response. The best fitehmthe one that minimizes the sum
total of the squared errors, which is done by malajing the two parameter values.
The value off; is of particular importance, because it descrithes effect that the
explanatory variable has on the response. A pesiti would mean that an increase in
X leads to an increase in the response, whereagadives; would mean that a increase
in x would lead to an decrease in the response. Ibtlegall goodness-of-fit for the
model is decent, then it can be inferred that tky@amatory variable is in fact a good
predictor of the responsé

Multiple linear regression takes this model ong dtather by adding in more
explanatory variables to be considered; simplealiregression can only consider one
explanatory variable. This model for this case is

Kk
Yi=:80+zlgjxij t & (2
=1
which includes several independent variabbes X, ..., x) and corresponding slope

parameters 1, f 2, ... f«). Again, the model is chosen on a least squarentse

method to minimize, ; the error term associated with title element within the model.

As with all regression models, the error terms mustnormally distributed, or the
assumptions of the model are not valid. Error tecan be tested for normality through
the use of a normal probability plot of the errarswhich it should form a relatively
straight line.

Poisson regression extends these basic ideasjbsgtiad for the fact that the
responseY; is a discrete random variable following Poissorsuagptions. The

probability density function associated with theg8on random variable is as follows:

Prcy ) = PN A (3)

This equation describes the probability associatétl Y events occurring given the

expected occurrence ratefof The equation is conditional on tkefactors that are

41



being tested within the model. The occurrence Aageactually a function of theg

variables and can be expressed through the follpinction:
A = Be= (4)

This equation is the basic model for the Poiss@ression, which at first sight looks
nothing like the simple or multiple regression misde However, what follows is a
logarithmic transformation of the response varidbleThis is a useful transformation
that takes the discrete random variabland makes it into a continuous random

variable in the form of In{). The new model becomes
()=, +3 B, (5)
j=1

This new model now looks exactly like the multifileear regression model, except for
the response, which is now a logarithmic transfdaroma

BecauseY; is assumed to be Poisson distributed, it is ingrdrto note a few
aspects of the distribution. One key feature ef Boisson variable is the fact that the
mean and the variance of the distribution are &alie equal. In other terms:

Var{Y,|x} = E{¥|x} = 4, (6)

Both the variance and mean are equal to the exppenimber of occurrences, The
equal mean and variance is often times a roadbblxk, may not always be true for the
model, but this will be relaxed later.

The next step for the model is to find the estasdbr the parameters to find the
best fit equation to the data. Simple and multiphear regression models estimate
their parametersg, + 5 through the use of the least squared errors teakniq
However, to get the best fit parameters when te&idution is assumed to be Poisson,
the estimation technique needs to be based off diffarent method. One popular
method for this is referred to as the Maximum Likebd function. In essence, this
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function is a function of the probability mass ftino shown in equation (3). To derive

the best estimate fot;, the Likelihood function for Poisson data is:

L(A) = ﬂiiex'o(j; A (7)

or the joint densities associated with thealues ofY. To maximize this function, the
derivative of is taken with respect tband set equal to zero. The result is the

Maximum Likelihood estimator fot:
~ _’]_ n
/lMLE = H _ Yu (8)

Once this estimation of is made, the model then calculates the paramefers

B, + B that produces the best fit results. The slopeddrave similar interpretations as

they did for multiple linear regression; positivalwes lead to positive correlations
between a specific factor and the response, andtinegvalues lead to negative
correlations.

Sometimes, however, the historical data may rnilfiof the assumptions of the
Poisson distribution; namely the fact that the asace is equal to the mean. In many
real world processes, especially crash data, thanee is larger than the mean. This
causes the problem of overdispersion. This isrgelassue, because if the response
variable is overdispersed, the estimations may betstatistically valid. Luckily,
models have been developed to handle this isstes iF accomplished by allowing the
variance to be greater than the mean, which iesgmted in mathematical terms as:

E{Y} =4 (8)

var(Y} = A [L+ U/ 9)A] 9)

Now, the variance is altered by a factpwhich represents the overdispersion factor.

The smaller this value becomes, the larger thedvsersion.
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Next, the extra variation is accounted for in fhemulation of the occurrence

rate (donated here gs rather thand, for distinction between models). The new model

becomes:
In(e) = B, +Zk::8j X & (10)

The probability density function is then:

) — eXp(_Ai,ui)(/]i:ui)Y‘ (11)
v,!

Pr(Y; |x., 44
However, this new function is not conditional ore texplanatory factors alone. In
order to have this density function unconditionfathee additional error term, it must be
integrated out. The error term here is assumebetgamma distributed. Once the

expression is integrated over, the density function becomes

Pr(Y|x ) = rr(feg\r!) (o 1=r)" (12)
where
r=_Y (13)
0+
and
g=1 (14)
@

These resulting equations form the Negative Binbmagression model. Again, the
Negative Binomial is a model that is an extensiantloe Poisson model, which allows
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for the data to be overdispersed. Whenever theesgmn ford becomes equal to
zero, the Negative Binomial model reduces back&Roisson model.

Parameter estimates for the Negative Binomialeggjon model can be made in
the same fashion as the Poisson’s parameters. nMiaxiLikelihood is again the most
common method. For the Negative Binomial modeg Lhkelihood function is the

joint product of densities, or

Ny &

Again, once this function is maximized fhrthe parameters fof, + 4 can be found

that produce the best fit model.

The goodness-of-fit for either the Poisson or NiegaBinomial distribution can
be determined by the value of the final likelihowdlue. The greater this value
becomes the better fit the model. The value magngbh depending on what
explanatory values goes into the model. Insigaificpredictor variables will increase
errors and lower the likelihood. Variables carebaluated through the use of p-values
calculating their significance in predicting thespense. Variables with a p-value of
0.01 or less can be considered significant contoifsuto the response, based on a 99%
or greater certainty.

Other common goodness-of-fit measures include Akaike information
criterion AIC) and the Bayesian information criterioBIC). Both methods take into
account that adding parameters to a model incraesesemplexity. Both are functions
of the logarithmic value of the maximum likelihoochlue and the number of
parameters within the model. TIAC takes the form

AIC = 2k - 2In(ML) (16)

wherek is the number of unknown parameters and ML is rtteximum likelihood

value. BIC takes the form
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BIC =kIn(n) - 2In(ML) (17)

wheren is the number of observations used in the mo#siksentially, the smaller these
values are the better fit the entire model becomes.

4.1.2 Crash Severity

For responses that represent counts, such as éragbency, Poisson and
Negative Binomial models are well suited. Howewsmetimes the response can be
discrete and binomial. A binomial response cary & one of two possible choices;
generally this is a value of 1 or 0. Crash ocawescan be modeled by a binary
response, such as whether a crash occurred oroflidacur. Crash or injury severity
can also be modeled as binary; the response ceuldiban injury or crash was severe
or 0 otherwise.

The basic regression model for dichotomous regr(sneaning only two
values) is the logistic regression model. Thedbgiregression model is a generalized
linear model, an extension of the general lineadet® It is able to handle discrete
output data, similar to Poisson and Negative Birednmodels. Extensions of the
logistic regression model allow the responses k& tan non-dichotomous responses
that are categorically based. Ordinal logisticresgion allows the response to take on
discrete values that have a common rank or ordeh as survey results with answers
ranked on satisfaction (dissatisfied, neutral,sé&il, etc.). Nominal logistic regression
takes into account categorical data that does aeé lan obvious ranking, such as the
county number of a location. The basic logistigression, on the other hand, deals
with binary responses. Unlike simple and multiphear regression where the expected
value for the response takes the form of equatibhand (2), the expected value of the

dichotomous responséis given by the formula

— — exp(ﬂo-'-ﬂilxi)
(%) = E{¥|x} =T expB+ B x) (18)
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where 77(x. yepresents the probability of a 1 occurring (or pneportion of 1's). The
formula is conditional on the vector of explanatéagtors x. The parameters are once
again represented I8 + 5, , Where the betas are treated as a vector corrdsgpio
the vector of xfactors.

The logistic model7(x, ¢an then be altered using a logarithmic transfoionat

usually denoted as a logit transformation. To His,tequation (18) is altered as

follows:

_ 1 19
) S L exp B, - %) (49

Then solving foexp(B, + 5,'X; )

n(x)

— UV = "X 20

L el A7%) (20)
And finally,

InL.—nET(Xi)Z)} =B, +B'% (21)

The left hand side of equation (21) representsldhé function. Now, the right hand
side is similar to that of multiple regression.

A useful aspect of the binary logistic regressioodel is the development of the
odds ratio. The odds ratio is essentially thehaftd side of equation (20). This ratio is
the ratio of the odds of an event occurring in @meup to the odds of the event
occurring in another group. Using the examplerakh severity where 1 represents a
severe crash and O represents a non-severe cmrasbgds ratio for an explanatory
variable such as sex of the driver (Male =1, Fem@lgmay be 1.2. Since this ratio is
greater than 1, it is interpreted that crashesluivg male drivers are more likely to
have been severe than for female drivers. To éadexactly how much more likely,
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the natural log of the odds ratio is taken and ddided to the number. Therefore in this
example, crashes involving male drivers are 1.f&4i as likely to be severe than for
female drivers.

However, before accurate odds ratios can be nthéeparameters need to be
found. This is done using the maximum likelihoodhe likelihood function for

logistic regression models are of the form,
L(B) = [ lx)* 1= 7)1 (22)

By maximizing this formula, the correspondifigcoefficients can be determined and
analyzed as in the previous models.

The goodness-of-fit can be interpreted in a numifeways for the logistic
regression model. One way is to view the value2otimes the natural log of the
likelihood value. This is interpreted in many wdike the AIC and BIC, in that the
lower this value, the better fit the model is. @timethods include the p-values of the
explanatory variables. Variables with too highagb-value can lower the goodness-of-

fit of the model and may be considered insignifican

4.1.3 Issues with Statistical Evaluation

Any statistical model that is chosen to descriteetiof data must be based on
the underlying assumptions associated with thatehodf the data does not follow
those assumptions, the resulting model fits may betreliable. One of the major
assumptions to the regression models mentionethisrstudy is that of independence
within the data. Data entries that are dependentother entries may have a
confounding effect on the fitted model. Significaxplanatory factors may be found
to be insignificant, or vice versa. Independenae lbe checked through the use of the
error terms. As was mentioned earlier, if the ietesms follow a normal distribution,
then there is a good chance that the data isvelgtindependent.

The reason that this becomes an issue with crathisg because of the natural
breakdown of a road traffic accident. Earlier,rasth was described as a single event

that encompasses one or many vehicles, which ieslathe or many passengers. This
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violates the assumption of independence. Congwlerseparate crashes that occur at
two different locations and times. 1t is likely think that a passenger involved in the
first crash would have injuries independent of ageager in a completely different
crash at a completely different location. Now, sider one crash that happens between
two vehicles, both of which containing two passesgdt can be assumed that the two
passengers within the same vehicle will have varnylar injuries; a direct violation of
independence.

To overcome this, researchers can do one of tingsh use only the data that is
independent of all other data, or account for theridependence within the model.
The first way is the easiest method, as it does ingblve more intricate and
complicated statistical software, and is easiemterpret the results. This is what is
done in the current study. To avoid the hierarghielationship between crashes,
vehicles, and passengers, the analysis on craghefiney was performed only based on
roadside features and the total number of crashesivMed on each particular road
segment. The crash frequency is a count of tatlcincidences, which does include
anything about the number of individual vehiclesiratividual passengers that would
lead to the inter-dependence within the data. Jéwmond analysis, which focuses on
crash severity, deals heavily with human factdrs. avoid dependence within the data,
only single vehicle crashes were studied. Thigdubut the dependence between
vehicles. Also, only the driver's personal chagaistics and human factors were
considered in order to remove the dependence iedolvith any passengers.

The second method a researcher could use is tmactor the inter-dependence
within the model. This is achieved by redevelopthg Poisson, Negative Binomial,
and Logistic Regressions to account for entries Have a hierarchical relationship.
For each level of the hierarchy, such as crasheosqn, the model calculates a unique
set of parameters. Although this method would poedvery valid results, its models
become complex very fast with increasing levelshigfrarchy. Because of this, the
analysis of these models was left outside the sobpl@s analysis.

Even if inter-dependence within a set of dataas a concern, there are other
issues that may cause the need for model recomsioler especially for the Poisson

regression model. As was mentioned earlier, thissBa regression model assumes

49



that the response’s mean is equal to its variaficthe variance is actually greater than
the mean, then the Negative Binomial model may lbetter fit. However, this may
not be the only issue with the Poisson data. Qcnally, data that is said to be
Poisson distributed (as crash data often is) qaoh that the response has several zeros.
Because crash frequency often gets modeled, itishard to find that many road
segments have no crashes throughout a given timedpeln fact, it is common that
there are more road segments without any craslasttiere are road segments with
one or more crashes. The model may run into esbmgroblems, or end up with
inaccurate estimates if there become too many exze0s within the data. This too
can be handled through the use of a new model. inAglae current models can be
modified to become a Zero-Inflated Poisson mod#bwever, this is a highly complex
model that will not be covered within this paper.

There is rarely such a thing as a perfectly fitdelp but many of these more
complex models get closer to best fit model thaneotsimpler models. Yet, the
Poisson, Negative Binomial, and Logistic modelsudtianot be completely omitted for
consideration. More than not, these models arBcgerit in crash prediction models,
and are able to show significant goodness-of-fibnly when these models fail to

predict efficiently should more complex models Isedito evaluate data.

4.2 Statistical Model Results and Discussion

Using the methodology behind the Poisson, Negavemial, and Logistic
regression techniques, three models were develapdcvaluated. The software used
to run and evaluate each model was the statigti@ekage SPSS. In this section the
input parameters as well as the output from eacHeinare given. The results from

these models are then discussed and potentialdatjgns are drawn.
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4.2.1 Poisson and Negative Binomial Regression

Using both the crash database and the roadwayntiome database, road
segment crash frequency was modeled through theobiseoisson and Negative
Binomial Regression in SPSS. The entries for thaglel consisted of road segments
within Arkansas that were part of a US highway,t&thighway, or interstate road.
Unfortunately, the database is set up in a way ahét these roads are specified with a
unique location via route, section, and logmilerieist County roads and city roads had
to be excluded because of the inconsistency witiendatabase. County and city roads
contain the large majority of crashes, and so ¢xislusion was one drawback of this
analysis. The data was further reduced to comtaiy road segments of a length of one
mile or less, and average daily traffic (ADT) volesnof 2000 or greater. This was
done in order to eliminate some road segments tihdt large segment lengths and
unrealistically small ADT values, which affectecetbverall crash rate. According to
the Arkansas Highway Department, roads with an ARlue of 2000 or greater are
considered to be medium to high volume roads. dfioee, low volume roads were also
left out of the study; mainly due to the lack ofalan these road segments.

Each road segment contained a range of logmileegal The crash occurrences
within the crash database were then separatecntauthe logmile ranges from which
they are addressed. This was the basis of caicgl#te total crash frequency. Also,
because this analysis focuses on intersection esasinly the crashes that had a ‘Yes’
value for the variable ATINTERSECTINGSTREET werensmlered. ‘Yes’ refers to
the fact that the crash did occur at two or motersecting roads. There is another
variable that could have potentially been used, GUNDNTYPE, which defines the
junction of roads if one exists (Intersection, hstction related, No Junction, etc).
When a crash is reported, both of these entriesa@pposed to be recorded, but rarely
are actually recorded together. The AHTD has adif that
ATINTERSECTINGSTREET is the most commonly recordedl most accurate of the
two entries.

Also, the analysis was run on each of the threesyetidata. The size of the
roadway inventory data changed considerably froar ye year, therefore causing the

need to run a new model for each year. Ideallgrghwould be an additional variable
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denoting the year of occurrence, but the road satgneary too much each year to

make this feasible.

The first year of roadway dhtad significantly more road

segments than did the other years, possibly digegment duplication. To avoid any

problems with this issue, the years were evaluségparately.

The explanatory variables used initially in the dals are given in Table 7.

There were 14 variables in all, 7 of which were sidared continuous. The other 7

variables were considered as discrete and categoaad therefore either ordinal or

nominal.

Ordinal describes a discrete categoneaiable that has a natural ranking.

Nominal variables include categories that have atumal ranking. Descriptions of

these variables are also shown in Table 7.

Table 7: Variables Included Initially in Poisson ard Negative Binomial Models

Variable Name
Crash Frequency
District

County

Length
Population
Urban

FNCLA

ADT

Lanes

Surface

Lane Width
Reconstruction
Terrain

Road Width

Pav Condition

Description of Variable Value
Total number of crashes on roadesaty 0,1,2, ..

The highway district in which the crashagated 1-12

The county in which the crash is located 51-7

The length of the segment of road 0-1

The Population Group of the crash lecesi surroundings  0-9

The Urban/Rural Code of the crash locatisatsoundings  1-5

Code for the Functional Class of the roadnsenqt 0-19
Average Daily Traffic volume > 1999
Number of lanes 2,4
Coded description of the type of surfactens 0-90
Width of the most narrow lane on thedroa 0-99
Year of the last reconstruction egnsent Year
Coded value for the physical surroundinigthe road 0-4
Width of road, excluding medians 0-99
Score denoting the condition of thegment 0-5

Type
Discrete (Scale)

Discrete (Nomina|

~

Discrete (Nominal)
Cuiatiis
Discrete (Ordinal)
Discrete (Noming)
Discrete (Nominal)
Continuous
Discrete (Nominal
Discrete (Nominal)
Continuous
Continuous
Discrete (Nominal)
ntaious

Continuous

The data was analyzed first using the Poisson modiee statistical package
used was SPSS, which contains the Poisson modalighrthe use of the GENLIN

function.

function.
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detailed layout of the input parameters and SP3fngois shown in APPENDIX A.
The outputs of the Poisson model for each yeadsmdayed in Tables 8-10.

The first table shows the results of the test oflel effects for each of the three
models (Table 8). Among the three years of datgrlg all of the explanatory
variables were shown to be significant based oftheiir p-values (in bold). Ideally,
each of the three years would have matched withr #ignificant variables. In this
case, only one or two variables were shown to bgymficant. For 2002 and 2004, the
county location of crashes was shown to be insiggnit based on a 99% confidence
interval, yet it was significant during 2003. Sianly, the year of the last
reconstruction was insignificant for 2003 and 2004t was significant for 2002.

The model results, or the coefficients to the igdine, are shown in Table 9.
Assuming the model is fitted well, these values baninterpreted in terms of trends.
For continuous variables like ADT, Road Width, LémgPavement Condition, etc., the
interpretation is straight forward. A positive ffi@ent means an increase in the
variable causes an increase in the response. dvag a positive coefficient, which
means that it tends to have a positive correlatiaiih the response variable, crash
frequency; the longer a road segment’s lengthpribee potential crashes it can have on
that segment. Traffic volume (ADT) also has a gigant positive coefficient, which
makes sense intuitively; the more vehicles on a@lsimoad at one time, the more
potentially dangerous the road becomes. This eaoompared with the recent claims
that road traffic accidents are more frequent caedsowith increasing traffic volumes
(Pickering, 2004).
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Table 8: Poisson Regression Test of Model Effects

2002 2003 2004

Wald  Chi- Wald  Chi- Wald  Chi-
Source Square df | p-value | Square df | p-value | Square df | p-value
(Intercept) 64.161 1 0.000 3.925 1 0.048 2.400 1 0121
District 44.840 1 0.000 22.990 1 0.000 68.954 1 0.000
County 0.300 1 0.584 29.158 1 0.000 0.524 1 0.469
Length 2,971.487 1 0.000 2,840.746 1 0.000 2,681.359 1 0.000
Population 103.352 1 0.000 106.298 1 0.000 271.250 1 0.000
Urban 20.233 1 0.000 21.583 1 0.000 50.742 1 0.000
FNCLA 363.357 1 0.000 268.742 1 0.000 218.274 1 0.000
ADT 1,930.336 1 0.000 1,959.993 1 0.000 1,623.364 1 0.000
Lanes 1,569.870 1 0.000 1,396.879 1 0.000 1,507.755 1 0.000
Surface 48.551 1 0.000 45.816 1 0.000 51.583 1 0.000
Lane Width 578.831 1 0.000 332.851 1 0.000 277.697 1 0.000
Reconstruction 26.471 1 0.000 0.293 1 0.588 1.122 1 0.289
Terrain 111.393 1 0.000 140.584 1 0.000 164.228 1 0.000
Road Width 575.849 1 0.000 441.437 1 0.000 494717 1 0.000
Pav Condition 44.130 1 0.000 272.401 1 0.000 177.126 1 0.000

Road width actually has a negative coefficient,alihcan be interpreted in the opposite
fashion; an increased road width creates fewerhcoasurrences. Wider roads lead to
less potential contact between vehicles traveliagitel to each other within the lanes.
Therefore, these values for road width seem venfistec. For variables that are

nominal in nature, such as District, County, Urb&WNCLA, Surface, and Terrain,

interpretation of these coefficients may be difficuHowever, these coefficient values
are often times miniscule enough that it does fii@ctthe response in a major way,
even though the variables themselves can be signifipredictors. County was shown
to be significant in 2003 with a coefficient of 002. Because this coefficient is so
small, it cannot be truly interpreted that Coungy (¥ell) was more dangerous than
County 2 (Ashley). In fact, the differences in tlesponse between counties will only
be a fraction of a car accident with this small aofcoefficient. Regardless of the

interpretation, the model still shows many of theseninal variables to be significant.
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Table 9: Poisson Regression Parameter Estimates

2002 2003 2004
95% Wald 95% Wald 95% Wald
Confidence Confidence Confidence
Std. Interval Std. Interval Std. Interval
Parameter B Error | Lower | Upper |B Error | Lower | Upper |B Error | Lower Upper
(Intercept) -2.384 0.298 -2.968 -1.801 | -0.568 0.287 -1.130 -0.006 | -0.450 0.290 -1.019 0.119
District 0.027 0.004 0.019 0.035 | 0.020 0.004 0.012 0.028 | 0.033 0.004 0.025 0.041
County 0.000 0.000 -0.001 0.001 -0.002 0.001 -0.003 -0.002 | 0.000 0.000 -0.001 0.001
Length 1.837 0.034 1.771 1.903 1.862 0.035 1.793 1.930 1.776 0.034 1.709 1.844
Population 0.092 0.009 0.074 0.110 | 0.096 0.009 0.077 0.114 | 0.145 0.009 0.128 0.162
Urban -0.134 0.030 -0.192 -0.075 | -0.141 0.030 -0.201 -0.082 | -0.210 0.030 -0.268 -0.152
FNCLA 0.125 0.007 0.112 0.137 | 0.107 0.007 0.094 0.120 | 0.094 0.006 0.082 0.107
ADT 5E-05 1E-06 4E-05 5E-05 4E-05 1E-06 4E-05 5E-05 4E-05 1E-06 4E-05 4E-05
Lanes 0.681 0.017 0.647 0.715 0.641 0.017 0.608 0.675 0.646 0.017 0.613 0.678
Surface -0.031 0.004 -0.039 -0.022 | -0.029 0.004 -0.037 -0.020 | -0.031 0.004 -0.039 -0.022
Lane Width 0.106 0.004 0.098 0.115 | 0.085 0.005 0.076 0.094 | 0.082 0.005 0.073 0.092
Reconstruction | 0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
Terrain -0.374 0.035 -0.443 -0.304 | -0.423 0.036 -0.493 -0.353 | -0.447 0.035 -0.515 -0.379
Road Width -0.027 0.001 -0.030 -0.025 | -0.024 0.001 -0.026 -0.022 |-0.024 0.001 -0.026 -0.022
Pav Condition | 0.011 0.002 0.008 0.015 -0.028 0.002 -0.032 -0.025 | -0.023 0.002 -0.026 -0.019

be relatively close for all the values and criterih may be difficult to interpret these

Table 10 shows the goodness-of-fit for each wearbdel. All three seem to

results currently, because there has not yet beradel to compare the Poisson model

to. Each criterion shown above is in a ‘smallebéiter’ form. These values may be

small or large. Until another model is run, thamnoot be fully interpreted.
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Table 10

: Poisson Regression Model Goodness-of-Fit

2002 2003 2004
Value/ Value/ Value/

Value df df Value df df Value df df
Deviance 1.90E+04 5,859 | 3.247 1.88E+04 | 6,052 | 3.107 2.02E+04 | 6,055 | 3.342
Scaled Deviance 1.90E+04 5,859 1.88E+04 6,052 2.02E+04 6,055
Pearson Chi-Square 2.77E+04 5,859 | 4.72 2.72E+04 | 6,052 | 4.489 2.97E+04 | 6,055 | 4.902
Scaled Pearson Chi-Square | 2.77E+04 5,859 2.72E+04 | 6,052 2.97E+04 | 6,055
Log Likelihood® -1.28E+04 -1.28E+04 -1.36E+04
Akaike's Information
Criterion (AIC) 2.57E+04 2.56E+04 2.71E+04
Finite Sample Corrected Al
(AICC) 2.57E+04 2.56E+04 2.71E+04
Bayesian Informatior
Criterion (BIC) 2.58E+04 2.57E+04 2.72E+04
Consistent AIC (CAIC) 2.58E+04 2.57E+04 2.73E+04

*Table values are based on a smaller is better form

Before accepting the Poisson model, certain aspettthe data need to be

verified. As was mentioned before, one assumptibthe Poisson model is that the

mean of the response is equal to its variance. é¥ew when attempting to verify this

with the crash data, it was found that the modéliaty encountered overdispersion.

The response variance was in fact greater thametsn. This violation of the Poisson

model may have a negative effect on the parametémates and the model’'s

goodness-of-fit. In fact, it may also be said tthas violation causes the estimations to

be unreliable. To overcome this issue, the datatested once again using SPSS, this

time using a Negative Binomial model.

The NegatBiaomial regression model is

another extension of the GENLIN function, but ittagnts for overdispersion in the

model. The setup was the same, with only minongka in the input codes. Coding

for the Negative Binomial tests are shown in Append. The outputs of the new

models are shown in Tables 11-13.
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Table 11: Negative Binomial Regression Test of Motl&ffects

2002 2003 2004

Wald  Chi- Wald Chi- Wald  Chi-
Source Square df | p-value | Square df | p-value | Square df | p-value
(Intercept) 26.617 1 0.000 4.751 1 0.029 4.715 1 0.030
District 27.800 1 0.000 13.702 1 0.000 41.875 1 0.000
County 1.353 1 0.245 6.833 1 0.009 0.069 1 0.793
Length 385.092 1 0.000 404.575 1 0.000 363.226 1 0.000
Population 44.935 1 0.000 49.892 1 0.000 109.996 1 0.000
Urban 0.437 1 0.509 1.776 1 0.183 5.868 1 0.015
FNCLA 55.371 1 0.000 44.183 1 0.000 27.558 1 0.000
ADT 417.261 1 0.000 416.820 1 0.000 339.181 1 0.000
Lanes 219.106 1 0.000 187.264 1 0.000 233.699 1 0.000
Surface 1.604 1 0.205 2.610 1 0.106 1.867 1 0172
Lane Width 113.366 1 0.000 66.187 1 0.000 58.840 1 0.000
Reconstruction 26.236 1 0.000 8.372 1 0.004 3.997 1 0.046
Terrain 22.835 1 0.000 41.526 1 0.000 50.527 1 0.000
Road Width 136.358 1 0.000 103.173 1 0.000 127.611 1 0.000
Pav Condition | 5.041 1 0.025 60.380 1 0.000 52.234 1 0.000

The end result of running the Negative Binomialresgion shows that there are some
slight differences with the model effects as compao the Poisson model. Based on a
99% confidence interval, 2002 and 2004 both shows#gnificant variables, whereas
2003 shows only 2 (significant p-values in boldt}exThe variables Urban and Surface
are not significant during any of the three yeafis suggests that the type of area in
terms of the level of urban or rural surroundingsnaihich the crash occurred is not a
predictive measure for determining crash frequenkjwever, the population group,
which gages the surrounding area in terms of irgginggpopulation, is significant. This
may be interpreted in a manner that suggests fieapopulation variable already has
enough predicting power for the model and that uhgan/rural variable is not even
necessary. Although surface type is shown to begmficant, it is important to note
that this study only considered US highways, Statdhways, and interstates, which

contain little variation in terms of the materialsed for each road. Other variables that
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are shown to be insignificant using a 99% confidemterval are County (2002 and
2004), Pavement Condition (2002), and Reconstrudi2®04). All other variables are
shown to be significant with p-values of less tlta@1. It was expected that County
would be highly significant do to the varying nawf the Arkansas landscape, but this
was not the case. Again, this was probably dubedimitation of the study to use only
highways and interstate roads, where there was niesf variation in terms of
roadways. County and city roads, which were laft of this study due to data
limitations, contain much more varying attributdssarface type, shape, and size. For
the sake of the data used, the interpretation shbalthat the county location is not
significant for crashes specifically on these higes and interstates. The Highway
District is significant, however, which suggestattithe specific highway systems are
significantly different in terms of crash frequenbyt not from county to county.

Table 12 now shows the parameter estimates of tegpknatory variables.
Again, by looking at the coefficients of the valedshown to be significant, trends can
be interpreted. Traffic volume, road segment lentgne width, and number of lanes
all show a positive correlation with crash frequesc whereas road width still has a
negative correlation. Lane width’s results areeiiesting because of its positive
correlation. It would seem to make sense that widees would produce fewer
crashes. However, the argument can be made thatwalth is highly correlated with
road width, and that road width’'s negative coedfiti may actually partially

compensate for lane width’s positive coefficient.
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Table 12: Negative Binomial Parameter Estimates

2002 2003 2004
95% Wald 95% Wald 95% Wald
Confidence Confidence Confidence
Std. Interval Std. Interval Std. Interval

Parameter B Error | Lower | Upper | B Error | Lower | Upper | B Error | Lower | Upper
(Intercept) -3.315 0.643 -4574 -2.056 |-1.375 0.631 -2.611 -0.139 | -1.386 0.638 -2.637 -0.135
District 0.04 0.008 0.025 0.055 0.028 0.008 0.013 0.042 0.048 0.007 0.033 0.062
County -0.001 9E-04 -0.003 0.001 -0.002 9E-04 -0.004 0.000 0.000 8E-04 -0.001 0.002
Length 1.532 0.078 1.379 1.685 1592 0.079 1.437 1.747 1492 0.078 1.338 1.645
Population 0.134 0.02 0.095 0.173 0.141 0.02 0.102 0.18 0.196 0.019 0.159 0.233
Urban -0.037 0.056 -0.147 0.073 -0.074 0.055 -0.182 0.035 -0.129 0.054 -0.234 -0.025
FNCLA 0.084 0.011 0.062 0.106 0.073 0.011 0.052 0.095 0.056 0.011 0.035 0.077
ADT 7.E-05 3.E-06 6.E-05 8.E-05 | 7.E-05 3.E-06 6.E-05 7.E-05 | 6.E-05 3.E-06 5.E-05 6.E-05
Lanes 0.519 0.035 0.45 0.587 0.469 0.034 0.402 0.537 0.506 0.033 0.442 0.571
Surface -0.012 0.01 -0.031  0.007 -0.015 0.01 -0.034  0.003 -0.013 0.01 -0.032 0.006
Lane Width 0.093 0.009 0.076 0.11 0.073 0.009 0.055 0.09 0.069 0.009 0.052 0.087
Reconstruction 0.003 7E-04 0.002 0.005 0.002 6E-04 0.001 0.003 0.001 6E-04 2E-05 0.002
Terrain -0.245 0.051 -0.345 -0.144 | -0.32 0.05 -0.418 -0.223 | -0.342 0.048 -0.436 -0.248
Road Width -0.025 0.002 -0.029 -0.021 | -0.021 0.002 -0.026 -0.017 | -0.023 0.002 -0.027 -0.019
Pav Condition 0.008 0.003 0.001 0.014 -0.025 0.003 -0.032 -0.019 |-0.023 0.003 -0.029 -0.017
(Negative binomial)| 1 1 1

studies within this subject.

Many of these significant variables and trendsehbeen previously shown in
Abdel-Aty et al. faum 2000 that ADT volumes, road

lengths, road widths, and urban/rural classificatwe all significant using a Negative

Binomial model for crash frequency. Road width vedso found to be significant in
studies by Anastasopoulos et al. (2007) and Berl{a@Q4). Wang et al. found that

both the number of lanes and traffic volumes wegaiicant in their 2006 study.
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Table 13: Negative Binomial Regression Goodness-Bit

2002 2003 2004
Value/d Value/d Value/d

Value df f Value df f Value df f
Deviance 6.77E+03 5,859  1.155 6.90E+03 6,052 1.139 7.22E+03 6,055 1.192
Scaled Deviance 6.77E+03 5,859 6.90E+03 6,052 7.22E+03 6,055
Pearson Chi-Square 1.04E+04 5,859 1.774 1.04E+04 6,052 1.713 1.09E+04 6,055 1.801
Scaled Pearson Chi-Square 1.04E+04 5,859 1.04E+04 6,052 1.09E+04 6,055
Log Likelihood -8.40E+03 -8.58E+03 -8.83E+03
Akaike's Information Criterion (AIC)| 1.68E+04 1.72E+04 1.77E+04
Finite Sample Corrected AIC (AICC| 1.68E+04 1.72E+04 1.77E+04
Bayesian Information Criterion (BIC| 1.69E+04 1.73E+04 1.78E+04
Consistent AIC (CAIC) 1.70E+04 1.73E+04 1.78E+04

*Table values are based on a smaller is better form

Finally, it is important to determine whether ortnibe Negative Binomial
model resulted in a better fit to the data. Logkat the goodness-of-fit values for each
of the year’'s models in Table 13, this fact is fied. Every criterion calculated with
SPSS shows a significant decrease compared toethdts from the Poisson model.
Because these criterion are based on a ‘smalletier’ form, the Negative Binomial is
concluded to be the better of the two models ferAhkansas crash data.

4.2.2 Binary Logistic Regression

For the second analysis of this study, a Binargi&iic regression model
was built to describe the nature of crash severltyash severity is a binary response,
where 1 represents a severe crash and O representbat is not severe. Distinctions
between the two are made based on a ranking sicallarsto injury severity. For this
analysis, only variables from the crash databases wensidered. Along with crash
severity, 17 variables were initially included imetmodel. These variables are shown
alongside their possible values in Table 14.

Many of the potential variables above are binarynature, meaning they have
only a value of 0 or 1. Injury severity is an ordi value ranked from 5 to 1, where 1 is
a fatal injury. Road system type is a nominal ealtom 1 to 5, because there is no

natural ranking of these values. Other non-binaayiables include the year of the
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accident, county location, number involved in eacsh, and age of the driver. Instead

of modeling road segments as in the previous aisalifss model is based on exclusive

crash occurrences. To avoid any hierarchical eatuthin the data, only single-vehicle

crashes were included in the model.

driver’'s values were used.

Table 14: Variables Included in Logistic Regressiomodel

For the hufaator variables, the vehicle’s

Variable
CRASHSEVERITY

YEAR

ATMOSPHERICCONDITIONS

LIGHTCONDITIONS

RURALURBAN

ROADSURFACECONDITION

ROADSYSTEM

ROADWAYALIGNMENT

Description
Non-incapacitating or greater = 1
Less than non-incapacitating = 0
2002 =1
2003 =2
2004 =3
Clear=1
Not Clear =0
Daylight =1
Not Daylight =0
Rural = 1
Urban =0
Dry=1
Not Dry =0
Interstate = 1
US Highway = 2
State Highway = 3
County Road =4
City Street=5
Straight =1
Not Straight =0

Variable
ROAAYPROFILE

WEEKDAY

NUMBERINVOLVED
ALCOHOLINVOLVED

RESTRAINTCODE

SEX

AGE
INJURYSEVERITY_ORD

LICENSESTATE

COUNTYNUMBER

Description
Level =1
Not Level =0
Weekend = 1
Weekday =0
1,23, ..
Ne 1
Yes=0
Safety be 1
Other =0
Male=1
Female = 0
Actual Age of Dev
1 = Fatal
2 = Incapacitating hyju
3 = Non-incapacitating Injury
4 = Possible Injury
5 = No Injury
AR =1
Other state = 0
1,2,3,....,75

Again, SPSS was used to make model fits.

The ramgsimply uses its

Logistic regression function to perform the anadysilnitially, the data was inputted

and run for all 17 variables. To avoid correlatissues similar to Road Width and

Lane Width in the previous analysis, the initialadebwas tested for correlated effects.

Although this was not a significant issue befotewas believed that the data in the

second analysis would have more correlation betwsene of the variables.

To be

sure, a correlation matrix was developed, whicthisplayed in Table 15.
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From the correlation matrix, two variables wereosgly related: Atmospheric

Conditions and Road Surface Conditions. This malersse, because when weather

conditions are clear, the road surface tends tdrpe Also, when the weather is rainy,

the road surface tends to be wet. Since the twxe we related, one was left out.

Because the correlation was so high, it did nottenawvhich one was chosen to be

removed, and so atmospheric conditions was takeén duojury severity also has a

natural correlation, although not as high as thevipius correlation, to crash severity.

Severe crashes tend to produce more severe injufiess, injury severity was left out
of the final model. Removing these two variabkkg Binary Logistic regression was

run once more. The results of this model calcalatire shown in Tables 16 and 17.

Table 15: Correlation Matrix for Binary Logistic Re gression Estimates
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= ] o ' w n = = o w T =
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Constant 10 -04 -0 00  -03 0o -03 -0 -01 -01 oo 02 -01 03 -02
YEAR -04 1.0 0.0 0.0 01 0.0 00 00 00 00 00 00 0.0 0.0 0.0
ATMOSPHERICCONDITIONS -01 0.0 1.0 0.0 00 -08 0o 00 00 00 00 00 00 0.0 0.0
LIGHTCONDITIONS 0.0 0.0 0.0 1.0 0.0 0.0 0 00 0o -0 o0 02 00 0.0 01
RURALURBAN -0.3 01 0.0 0.0 1.0 0.0 0.0 04 04 0.0 0.0 0.0 0.0 0.0 0.0
ROADSURFACECONDITION 0.0 0.0 0.8 0.0 0.0 1.0 0o 0o 00 00 00 00 0.0 0.0 0.0
ROADSYSTEM -0.3 0.0 0.0 0.0 0.0 0.0 10 00 00 00 00 00 01 0.0 0.0
ROADWAYALIGNMENT -01 0.0 0.0 0.0 01 0.0 0o 10 -02 00 00 00 0.0 0.0 0.0
ROADWAYPROFILE -01 0.0 0.0 0.0 01 0.0 00 -02 10 00 00 00 0.0 0.0 0.0
WEEKDAY -01 0.0 0o -01 0.0 0.0 0o 00 0o 10 01 01 0.0 0.0 0.0
NUMBERINVOLVED 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 01 10 00 0.0 01 02
ALCOHOLINVOLVED -0.2 0.0 00 -02 0.0 0.0 0.0 0.0 0.0 -04 0.0 10 041 0.1 0.0
RESTRAINTCODE -01 0.0 0.0 0.0 0.0 0.0 0 00 00 00 o0 -01 1.0 01 01
SEX -0.3 0.0 0.0 0.0 0.0 0.0 00 00 00 00 01 01 01 1.0 01
AGE -0.2 0.0 0o -01 0.0 0.0 00 00 0o 00 02 00 01 01 1.0
INJURY SEVERITY ORD -0.5 01 0.0 0.0 01 oo -0 -01 00 o0 -03 o0 -01 0o -02
LICEN SESTATE -0.3 0.0 0o -01 0.0 0o -0 00 0o 00 01 o0 -01 0.0 03
COUNTYNUMBER -0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0

coaboboboobdt oo oo oo NURYSEVERITY_ORD

CooMNODLOUD WSO oo oo oo oin

62




Table 16: Binary Logistic Regression Parameter Estnates and Effects

Variables p-

B S.E. Wald df value Exp(B)
YEAR 0.032 0.026 1.497 1 0.221 1.032
LIGHTCONDITIONS 0.204 0.043 22.023 1 0.000 1.226
RURALURBAN 0.307 0.043 49.908 1 0.000 1.359
ROADSURFACECONDITION 0.51 0.05 103.161 1 0.000 1.665
ROADSYSTEM -0.088 0.018 23.148 1 0.000 0.916
ROADWAYALIGNMENT -0.155 0.048 10.35 1 0.001 0.857
ROADWAYPROFILE -0.129 0.047 7.444 1 0.006 0.879
WEEKDAY 0.051 0.042 1.474 1 0.225 1.052
NUMBERINVOLVED 0.406 0.023 301.804 1 0.000 1.500
ALCOHOLINVOLVED -0.678 0.058 136.105 1 0.000 0.508
RESTRAINTCODE -0.896 0.045 404.526 1 0.000 0.408
SEX 0.092 0.045 4.214 1 0.040 1.096
AGE -0.004 0.001 15.744 1 0.000 0.996
LICENSESTATE 0.613 0.06 102981 1 0.000 1.846
COUNTYNUMBER 0 0.001 0.002 1 0.963 1.000
Constant -1.051 0.151 48503 1 0.000 0.349

Table 17: Logistic Regression Model Summary

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square
1 14,036.025 .094 136

From Table 16, all variables are considered sigaift based on a 99%
confidence interval except for Year, Weekday, Sard County Number. The
interpretation of this is simple; based on the Awd@s crash data, the results do not
show significant change in crash severity from yayear, county to county, day to
day, or between male and female drivers. Theseltsesvere mostly as expected,
mainly due to the nature of the response. Aghiarésponse variable being modeled is
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crash severity, which was not expected to be deg@ndn day or location. This is
opposite from the expected results about crastuéecy, where day and location were
expected to be significant. The risk of a crashirduthe weekend or in a specific
county may be higher than another county on anodlagy but the severity of those
crashes should be consistent around the state w&exactually found to have a p-value
of 0.04, which is significant on a 95% confidenoterval, but not on a 99% confidence
interval.

The significant variables, on the other hand, amremdifficult to interpret.
Assuming this is a well fit model, the slope coafints for the binary logistic model
cannot be interpreted the same as before. Heserehd is not specifically linear. In
fact, most of the explanatory variables are binaales of 0 or 1, which would make
an interpretable relationship between the coeffitieand response nearly impossible.
However, as was mentioned before, one positivecasgausing the logistic regression
model is its calculation of the odds ratio. Foe thutput given in this table, the odds
ratio corresponds to th&xp(B) term. Road Surface Condition was determined
significant with this model and has an odds rafid.665. This odds ratio is calculated
as the odds of equaling a 1 (or having a dry roaadition) divided by the odds of
equaling a 0 (or having a road condition that it ary). Because this ratio is greater
than 1, it can be interpreted as saying that semerghes have a higher probability of
occurring on dry roads as they do on roads thahatelry; all other things being equal.
Although that may not seem intuitive, this is ayéasible situation. In fact, if road
conditions are poor, such as wet or icy, drivers/rha more alert and drive slower.
Crashes may be more abundant during these conglittbrt severe crashes may not be
if drivers are driving slowly and cautiously. #when conditions are clear that drivers
tend to speed and drive more recklessly, causing mevere crashes.

Roadway curvature is shown to be significant beghtically and horizontally.
The odds ratios for Roadway Profile and Roadwaydé&rare 0.857 and 0.879,
respectively. Because these values are less thd@nchn be suggested that severe
crashes are more prominent along curved roads stramght and level roads. This
result is as expected, because of the increaskdmslved when driver visibility is

decremented by blind spots caused by curves.
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The restraint code variable is also significantwvan odds ratio of 0.408. Since
1 refers to the situation where the driver is wegra seat belt, this odds ratio is
interpreted as conveying that the probability o$evere crash is actually decreased
when wearing a seat belt. This is important ineottlerms, because crash severity was
shown to be correlated with injury severity. Thigeans that the data has shown
significant evidence that seat belts reduce crash iajury severity. The variable
associated with alcohol shows similar results. oltds ratio states that crash severity is
lessened when ALCHOLINVOLVEMENT is equal to 1, meanthe driver has not had
alcohol.

An odds ratio close to 1 for any of the variabdeggests that there is no real
difference in the odds of the specific values & trariable. For example, Sex was
almost shown to be significant using a 99% confademterval. However, even if it
was concluded that the sex of the driver was dSiganit, the odds ratio of the variable is
1.096. This suggests that even with a significargdicting relationship to crash
severity, the risk is barely increased when theeatris male, rather than female. But
this difference in risk is small in comparison ther variables significance.

Age is the only true continuous variable withimstdata, and therefore the odds
ratio cannot be interpreted for this variable. Tbefficient is -0.004, which shows that
there is no major difference between crash sevéetyween 18 year olds and 64 year
olds, for example. However, the trend is still sfggant and can be somewhat
interpreted as an increase in crash severity fberadrivers.

In terms of previous studies, many of these figdirare comparable to past
research. Some results that are emphasized istilly as being significant both here
and in previous research are road surface conditfiim et al., 2007; Shankar et al.,
2004), lighting conditions (Al-Ghamdi, 2002; Anast@oulos et al., 2007; Jones et al.,
2003; Yau et al., 2006), roadway curvature (Abdg}-At al., 2000; Anastasopoulos et
al., 2007; Kim et al., 2007), seat belt usage (Huiz et al., 2003), driver age, gender,
and alcohol usage (Abdel-Aty et al., 2000; Joned.eR003).
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CHAPTER V — OBSERVATIONAL ANALYSIS

5.1  Methodology of Observational Analysis

Observational road studies in this report serve tmportant functions that
statistical analysis fail to provide. First, assaaentioned earlier, is the observational
study’s ability to describe problem areas withimoad system before a crash occurs.
The crash data only focuses on the aspects of esasiat have already occurred. By
observing several types of roads and locationsetipeoblem areas can be analyzed and
solutions can be recommended. This proactive @gbralisregards any past data and
focuses only on the current roadway issues thatffact crashes in the future.

The second function that the observational analyssrve is their ability to
measure potential factors or hazards that cannatrideave not been, recorded in either
the roadway inventory or crash database for Arkensdhis gives a much better
representation of driver behavior as compared te #ubjective measurements
documented in the crash database. Also, aspedtseeabad that are not documented
explicitly in the roadway inventory file can be évated. Overall, the observations can
be used to bridge the informational gaps that tehcal data may have had.

5.1.1 Choice of Locations

Although the quality of observational analysegyenerally more accurate, as
compared with the statistical analyses, the bigghksivback of the observational
technique is the amount of time and money thatakes$ to evaluate every single road
system. For an ideally proactive approach to eféty, observations should be made
for every road type, segment, and location thaiveilable. When this is not a feasible
solution, it is common that a sample of all thed®& chosen to be evaluated. Because
of the 115,000 potential road segments to be oksgewithin the state of Arkansas, a
method was developed to sample only a few of teegenents.

The choice of road segments to be observed camaole using several methods,
which depend heavily on the scope of the study.r thes particular study it was
decided to sample roads that have been historicatlye dangerous than other roads.

These roads are determined by a ranking systemmtbasures the crash rate among all
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potential road segments, with respect to the leagth average daily traffic volume of
each particular road segment (Anastasopoulos e2@07). The following equation
shows the calculation method for each road segmeealative crash rate:

Accidents,,; (23)

AccidentR&e* ., =
" (ADT,,,; X Length x365

ear,i

* Anastasopoulos et al., 2007

This expression represents accident rates for @fgpgear on a road segmeint
Accidentseqri is the total crash count for road segmenin a specific year, and
ADTveari represents the Average Daily Traffic volume meaddor that year on thi¢h
road segment. For this analysis, the crash coomdists of only those crashes that are
denoted as being intersection related or at amsettion. This is done in order to stay
consistent with the results of the statistical gsial which only takes into account the
intersection crashes. To transform the ADT values Average Yearly Traffic, this
average is multiplied by 365. It is natural towamse a positive correlation between the
length of a road segment and the number of cragias occur on that segment;
therefore the length is also factored into the fatetion. Rates are usually given units
in terms of the number of crashes per 100,000,@Hcles traveled per road length,
which would require the above rate to be multiplkd100,000,000. However, this
scaled factor does not affect the ranking ordemafl segments, and was thus left out
of the expression.

For this particular study, it was important to fecan roads that are regarded as
more dangerous, because these roads need the tteosioa. The reason they need the
most attention is the fact that road segments whi highest crash rates are the
locations that can stand for the most improvemelitis important to note that the
ranking crash rate method is only used to sampelgdhat are assumed to be more
dangerous than most other road segments. This maesean that these choices are
the most dangerous road segments in Arkansas.

Within the roadway inventory file, road segmentasionally change from

year to year. To overcome this, a separate crashranking was made for each of the
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three years. The choice of road segments forgtidy will then be based on those

road segments that are consistently at the topai gear’s ranking.

5.1.2 Location Procedures

Once all possible road segments have been ranketthdir respective crash
rates, the locations with the highest rankings Wwélvisited. The ranking is based on
intersection crashes because it is easier to emeoliazards when cars are in direct
contact. Therefore, each road segment chosen lellanalyzed based on the
intersecting streets throughout the road segmkns. important to notice that there is a
restraint on the Arkansas data, which only allolws portion of the study to be focused
on State highways, US highways, and interstatekis i6 due to the lack of data for
county roads and city streets. Crash frequencyatabe collected for segments of
these roads, because they are not broken up igimesgs like the larger roads are.
Therefore, the locations chosen for analysis wdl those on the highways and
interstates. This will also be in conjunction wilte statistical analysis.

At each location, several observations will be enatbout the road and traffic
flow. There are many aspects of the road itsslfivall as driver behavior, which is not
fully describable in the historical data. These #tre most important aspects to record
and survey. The crash database and roadway inmyedtiabase take into account
general details about the shape of the road, ssitheagrade and curvature of the road,
but this is not always enough. Road layout is atsportant. When considering the
intersections of major highways and interstatess important to think about signage
and lane markings. The data will say whether dranorash occurred at a traffic light
and whether that light was functioning, but it doest mention anything about the
signage and how clear it was. Perhaps there werggms or lane markings to guide
the traffic. In cases like this, it is importamt dbserve the flow of traffic and the
behavior of the drivers through the entire intetisec If right-of-way and traffic flow
is not properly displayed, it might be visible blget actions taken by the driver.
Improper turns could be a sign that the driver dmt know what action to take.

Therefore, for each location, it is important tosetve all signage, lane markings,
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layout of the road, and other surrounding factarshsas buildings that may affect the
way a person drives in that area.

Another aspect of the observational study is thalysis of driver behavior; in
particular, the behavior that may not be attributetbad signage or markings along the
road. These aspects may be in terms of humanrf&dtungs that the driver is doing
that may distract them from their driving. Thisymaclude whether or not they have
any passengers, if they are talking on cell phomesif they are doing any other
distracting task that keeps their eyes off the roadifferent locations may have
different populations with different behaviors, $b is important to note these
differences. This part of the study may be extignseibjective, but it allows some
insights on the issues involved on the road todayas already been shown that these
human factors are nearly impossible to measure tgqaavely, but studying driver

behavior may be able to highlight important togltat need to be addressed.

5.2  Observational Approach Results and Discussion

Locations were chosen by means of a ranking systieorash rates among all
possible locations. The results of the rankingewvevaluated and several locations
were chosen to be visited for a hands-on obsemaltistudy. The findings made at
each location, including any infrastructural probte driver behaviors, signage issues,

etc. were documented and discussed.

5.2.1 Choice of Locations Results

Crash rates for all three years (2002-2004) oftohisal crash data were
analyzed. Road segments were chosen based onigbwhle ranking was in each year.
Due to the lack of the physical ability to obseeach of the ranked locations, many
segments were chosen based on their relatively tagks for each of the three years.
Segments that were consistently high in each yeaewiven more emphasis than a
location that had only one year of high rank. TWwas done to avoid potential outliers,
which may have been the cause of some extraneot@danvolved with any one road
segment during any one of the three years. Thgnali rankings are shown in Tables

18-20. The final choices of locations are showiatle 21 and again in Figure 3.
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This figure shows the actual locations as an oesvuinap throughout the state
of Arkansas. Each one of these locations is showgreater detail in Appendix B

including the aerial screenshots of the intersectio
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Table 18: 2002 Crash Rate Ranking

Rank City County Route Section BegLogmile Length* DT* Frequency* Crash Rate
1 North Little Rock 60 67 10 1.16 0.01 45,589 60 60BE-04
2 Marion 18 64 17 19.26 0.01 6,100 8 3.593E-04
3 Little Rock 60 30 23 135.17 0.1 2,673 35 3.5872E-0
4 Texarkana 46 30 11 0 0.01 21,000 26 3.392E-04
5 Blytheville 47 55 12 67.33 0.01 18,000 18 2. 74BE-
6 White Hall 35 270 11 6.84 0.01 8,500 7 2.256E-04
7 Marion 18 64 17 19.26 0.02 6,100 10 2.246E-04
8 Blytheville 47 61 3 13.58 0.01 6,200 5 2.209E-04
9 Pine Bluff 35 79 09B 0 0.01 15,000 12 2.192E-04
10 Jacksonville 60 67 10 10.89 0.28 2,124 44 2.04E
11 Fayetteville 72 112 0 141 0.01 6,800 5 2.018E-0
12 Little Rock 60 365 12 0.69 0.01 15,000 11 2.009E
13 Little Rock 60 430 21 7.68 0.01 61,000 43 1.981E
14 Alma 17 71 15 0 0.01 13,000 9 1.897E-04
15 Sherwood 60 67 10 3.09 0.27 3,241 60 1.879E-04
16 Jonesboro 16 63 7 1.64 0.01 12,000 8 1.826E-04
17 El Dorado 70 82 05B 24 0.02 11,000 14 1.743E-04
18 Fort Smith 65 71 14B 3.53 0.01 21,000 13 1.608E-
19 Van Buren 17 40 11 7.38 0.01 33,000 18 1.494E-04
20 Van Buren 17 59 6 0.94 0.01 9,300 1.473E-04
21 Dumas 21 54 2 0.68 0.01 5,600 3 1.468E-04
22 Fort Smith 65 271 0 0.1 2,300 12 1.429E-04
23 North Little Rock 60 67 10 0.84 0.36 3,341 61 390E-04
24 Van Buren 17 59 5 25.14 0.01 23,676 12 1.389E-04
25 Fort Smith 65 22 1 3.72 0.01 40,000 20 1.370E-04
*Length and ADT have units of miles, while Frequermas units of cashes. All other

numbers are references.
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Table 19: 2003 Crash Rate Ranking

Rank City County Route Section BegLogmile Length* DT Frequency* Crash Rate
1 Jacksonville 60 67 10 10.89 0.28 2,124 51 2.389E-
2 Gateway 4 62 2 18.88 0.02 2,400 3 1.712E-04
3 Dumas 21 54 2 0.68 0.01 5,600 3 1.468E-04
4 Clarksuville 36 103 0 1.6 0.1 2,100 11 1.435E-04
5 Marion 18 64 17 19.26 0.02 6,000 1.370E-04
6 Gentry 4 59 01B 0.57 0.03 2,200 1.245E-04
7 North Little Rock 60 70 13 0.98 0.02 17,800 16 231E-04
8 Fort Smith 65 255 3 5.28 0.04 21,000 37 1.207E-04
9 Blytheville 47 18 6 15.99 0.02 5,700 5 1.202E-04
10 Fort Smith 65 22 1 0.06 0.01 12,000 1.142E-04
11 El Dorado 70 82 05B 2.4 0.02 11,000 1.121E-04
12 Dardanelle 75 7 13 14.55 0.05 8,300 16 1.056E-04
13 Fayetteville 72 71 16B 2.59 0.03 22,000 25 1088
14 North Little Rock 60 67 10 0.84 0.36 3,341 44 00RE-04
15 Paragould 28 49 2 17.06 0.03 15,000 16 9.741E-05
16 Fort Smith 65 271 1 0 0.1 2,300 8 9.529E-05
17 Hamburg 2 82 8 24.03 0.01 8,700 3 9.447E-05
18 Marked Tree 56 140 1 0 0.01 2,900 1 9.447E-05
19 Pocahontas 61 62 19 10.59 0.02 4,400 3 9.340E-04
20 North Little Rock 60 70 13 0.66 0.03 11,000 11 .132E-05
21 Pine Bluff 35 63 13B 1.34 0.05 9,100 15 9.032E-0
22 Sherwood 60 67 10 3.09 0.27 3,241 28 8.766E-05
23 Hope 29 67 2 14.76 0.03 4,200 4 8.698E-05
24 Sheridan 27 35 2 13.44 0.07 2,300 5 8.508E-05}
25 Marion 18 77 5 15.84 0.02 6,600 4 8.302E-05
*Length and ADT have units of miles, while Frequermas units of cashes. All other

numbers are references
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Table 20: 2004 Crash Rate Rankings

Rank City County Route Section BegLogmile Length* DT Frequency* Crash Rate

1 Jacksonville 60 67 10 10.89 0.28 2,124 44 2.0QZE-

2 Marion 18 64 17 19.26 0.02 7,500 11 2.009E-04

3 Bryant 62 30 22 122.69 0.46 2,952 95 1.917E-04

4 Fort Smith 65 271 1 0 0.1 2,000 12 1.644E-04

5 El Dorado 70 82 05B 2.4 0.02 10,500 11 1.435E-04

6 Fort Smith 65 64 1 0.07 0.08 8,900 35 1.347E-04

7 North Little Rock 60 30 23 140.99 0.18 3,563 30 .28PE-04

8 Blytheville/Osceola 47 61 3 4.22 0.01 4,300 2 74R-04

9 Lockesburg 66 371 1 0 0.02 2,200 2 1.245E-04

10 Pangburn/Searcy 73 16 13 0.89 0.02 2,300 2 E-0a1

11 Fayetteville 72 71 16B 2.59 0.03 23,900 28 1000

12 North Little Rock 60 70 13 0.66 0.03 12,300 14 .039E-04

13 Pine Bluff 35 63 13B 1.34 0.05 9,200 17 1.013E-0

14 Dardanelle 75 7 13 14.55 0.05 7,200 13 9.893E-05

15 Fort Smith 65 22 1 0.06 0.01 11,300 4 9.698E-05

16 Marked Tree 56 63 08B 0.9 0.02 2,900 9.447E-05

17 Blytheville 47 18 6 15.99 0.02 5,800 4 9.447E-05

18 Paragould 28 412 9 0.19 0.03 14,600 15 9.383E-05

19 Paragould 28 412 9 0.16 0.03 14,900 15 9.194E-05

20 Magnolia 14 82 03B 0.24 0.03 8,200 8 8.910E-05

21 North Little Rock 60 67 10 0.84 0.36 3,341 39 883E-05

22 Harrison 5 65 01B 1.73 0.05 12,400 19 8.396E-05

23 Osceola 47 140 2 14.49 0.06 3,300 6 8.302E-05

24 Jacksonville 60 294 1 1.44 0.02 8,300 5 8.252E-0

25 Pine Bluff 35 79 9 11.91 0.03 9,000 8 8.118E-05
*Length and ADT have units of miles, while Frequermas units of cashes. All other

numbers are references
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Table 21: Final Observation Locations

Location #

© 00 N oo 0o~ WN P

N NN DNNDNDNRRRRR B R B P
o U0 M W NP O © 00 N O 0 M W N PP O

County
Crawford
Mississippi
Mississippi
Mississippi
Saline
Johnson
Yell

Desha
Washington
Crawford
Crawford
Crawford
Pulaski
Pulaski
Pulaski
Crittenden
Crittenden
Pulaski
Pulaski
Pulaski
Jefferson
Jefferson
Crawford
Crawford
Crawford

Jefferson

City

Alma
Blytheville
Blytheville
Blytheville
Bryant

Clarksville

Dardanelle

Dumas
Fayetteville

Fort Smith

Fort Smith

Fort Smith
Jacksonville
Little Rock

Little Rock
Marion

Marion

North Little Rock
North Little Rock
North Little Rock
Pine Bluff

Pine Bluff

Van Buren

Van Buren

Van Buren
White Hall

Route
71
18
55
61
30

103

54

71
22
255
271

67
365
430
64
77
67
70
70
63
79
40
59
59
270

Section
15
6
12
3
22
0
13
2
16B

10
12
21
17

10
13
13
13B
9B
11

11

Logmile
0.00
15.99 - 16.01
67.33
13.58
122.69 - 123.15
1.60-1.70
14.55 - 14.60
0.68 - 0.69
2.6
0.60 - 0.70
5.28-5.32
0.00-0.10
10.89-11.17
0.69
7.68
19.26
15.85 - 15.86
1.16
0.66 - 0.69
0.98 - 1.00
1.34-1.39
0.00
7.38
25.14
0.94
6.84

Type bintersection
Interstate/Highway
Highyildighway
Interstateiftage
Interstate/Higay
Highway/Faget
IntersHitgiway
Highway/Higlywa
Highway/City Street
Highway/Citye®t
Highway/fiqy
Intergtdighway
Highwaghivay
High\@ity Street
Interstate/Higlyw
Interstate/Gtyeet
Frontage/AccesadRo
Interstdigiway
HighwayAC8treet
Higty/City Street
hstate/Highway
Highvzzity Street
Interstate/Highw
Interstate/Highway
Interstate/Highway
Interstate/Highway
Interstate/Migh
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Figure 3: Observation Locations Overview

5.2.2 Location Analysis

The observational analysis, which covered a tofa26 road segments, led to
many discoveries concerning road layouts and trdfgéhavior throughout Arkansas.
Each road segment displayed some positive aspacis$, some negative aspects.
However, because these intersections were chossedban their high crash rate
ranking over the years between 2002 and 2004, & fwand that there were several
more aspects considered potentially dangerousrrédthe safe. This is especially true
in the area of traffic signs, lane markings, drivesibility, and turning lanes. The crash

and roadway databases do not have extensive infammabout these aspects along
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each road segment.

Therefore these findings caenpally help give additional

insights for why some areas are more dangerousdtiars. Table 22 is a display of

many of the crucial findings discovered across g¢hégkansas intersections. It

overviews a number of concerns along with a deSonpand specific locations

associated with them.

Table 22: Key Problems Among Locations

Major Problem Category

C1

Cc2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

Poor Lane Markings

Poor Signage

Conflicting Information

Poor Turning Lanes

Medians
Poor Traffic Signal Layout

Crosswalks/Other Obstacle

Poor Visibility

Poor Merging

Timed Traffic Signals

Traffic Signal Duration

No Traffic Signal

Angled Intersections

Description of Intersectionlssues Example Locations
Markings are not visible, diffit to interpret, worn 6, 12, 14, 15, 17
down, or non existent
Signs that are not visible, diffi¢dolinterpret, or non 6, 7, 10, 14, 17, 23, 25
existent
Signage, lane markings,sits, or infrastructure with 7, 8, 14, 25
conflicting driver information
Turning Lanes are too short,n@oow, too crooked, 1, 6,7, 9, 11, 12, 14, 20, 22, 24
not visible, or non existent

Medians along or within the road, serving as olegac 1,2,3,7,15,16,17, 21, 25

Signals are not located directly above road oraeg 6,8,12,13, 14,24

Crosswalks, railroadksatrolley tracks, or any other8, 12, 18, 19
obstacle crossing the intersection

Field of view obstructed by objectsharp turns in the 2, 3,5, 6, 7, 9, 13, 15, 18, 21, 23
road, or elevated roads

Roads merge too quickly or in dangeroanditions 3,5, 10, 15, 16, 20, 21, 23, 26
such as high speeds

Signals are not activated $snsors, affecting the10, 11, 19
responsiveness of traffic

Signals with longer thanuak red light durations, 11, 13, 20
causing several cars to run yellow lights

No traffic signal existing at intersection, onlgiss 4,9

Intersecting roads are notpgrdicular, and form 2,9, 10, 12, 13, 17

difficult angles of cross traffic

Figures 4-7 show some examples of bad signagéamedmarkings (C1 and C2)

found throughout these intersections. Instand@sthe ones shown in these figures are

comparable to many intersections observed througthisi study. Figure 4 and 5 show

two intersections that do not even have lane mggkito direct the traffic.

It was

76




observed at these intersections that many drivenge wot sure where to move their
vehicles, because there were no obvious directmmseparations on the road. In
Figure 4, the main road consists of what looks &kitaree lane road, where one side of
the road is wide enough to contain two lanes. Yes road quickly narrows to a one

lane road, without any signage or markings to alllsivers to merge properly.
li

Figure 4: Worn Lane Markings (C1) — Location 17, Maion, Crittenden County

Figure 5: No Visible Lane Markings (C1) — Location6, Clarksville, Johnson
County
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The situation in Figure 5 features an implied leftning lane along with two other
lanes on either side of it. There are clues thist intersection used to be marked, but
they have faded beyond recognition. Lanes thahathe visibly seen should always
be kept in good condition or drivers run the rigknasinterpreting where they should
drive. This misinterpretation may easily lead toaccident as soon as other vehicles
with the same misinterpretation enter these roadti=hicles turning onto a road with no
marking may cause them to cut the turn too shortoorwide, which could cause a
potential interaction with oncoming traffic on thther road.

Signs, like lane markings, are also a large sowtedriver information.
However, there are many places that do not havessigthat do have signs that are not
visible (C2). During this study, it was found thamost locations contained a fair
amount of signage. Yet, many of these signs wetéatated in the best locations. For
example, Figure 6 shows an intersection where tineirtg directions for the traffic
signal were displayed along the overpass. Thepessiere extremely dirty and nearly
blended in with the surrounding infrastructure. eyhdid not stand out like proper
signage should, and therefore went unobserved Imy avers.

Figure 6: Poor Signage (C2) — Location 14, Little Bck, Pulaski County

Often times, intersections that contain good signand lane markings will use
both together to emphasize proper driver behavieor example, a traffic signal may

display signs that portray the turning conditiorfstite lanes ahead, while the lanes

78



contain similar directional markings. At these domtersections, drivers have the
opportunity to find out what lane they need to bdfiist with the road markings and
then again with the signs. However, it is commioat drivers do not pay attention to
both. Some drivers may only pay attention to wikabn signs, where as others may
pay closer attention to the road itself and lanekngs. Therefore, intersections that
contain only signs or only lane markings contaigngicantly less information for
drivers to be aware of. Figure 6 is an exampla obad that contains only signage to
direct traffic flows. On this road there are nadamarkings for left or right turn lanes,
even though there are left turn lanes. Drivers \idibto see the signs have no other
way of knowing they are in the right or wrong lan#il perhaps they get involved in an
accident. Figure 7 is another example, but wieh dpposite conditions (C1 and C2).
This road segment contains an arrow lane markugfg bhefore the traffic signal, but no
signs above the traffic light. Here drivers mayt see the arrow on the road and
attempt to turn left; a potential crash situatiddoth lane markings and signs are good
pieces of information, but it increases safetyh#yt both exist at an intersection and if
they are both visible. This gives the driver thestnawareness of the actions they will
need to take.

Figure 7: Lane Markings Only (C1, 2) — Location 7Dardanelle, Yell County

79



The next two figures display an interesting issdiscovered during the
intersection observations. The issue here is qoé@eopposite of the most usual case of
not enough signage and lane markings. Insteasl peniticular road segment contained
an over abundance of markings. Figures 8 andt@reahe same road segment, which
is at the intersection of a state highway and aestate. Therefore, there were several
exit ramps coming to and from the interstate; mahwhich were one-way roads. No
Entrance signs are common at these types of im@oss, yet this intersection
contained 6. The two roads intersecting the maghvway were the on and off ramps
for the interstate; one is allowable to enter,dtteer is not.

However, with the current layout of signs and lanarkings, it appears that
neither road is approachable. The informationtos toad segment was too complex,
leading to driver confusion (C3). It was observiealt drivers took a lot longer to make
turns at this intersection, perhaps due to morésaetmaking on the driver’s part. In
fact, the main problem area at this intersectioth t@nflicting information between its

signs and lane markings (Figure 8).

Figure 8: Conflicting Information (C3) — Location 2 5, Van Buren, Crawford
County

80



Figure 9: Unnecessary Signage (C1, 3) — Location ,28an Buren, Crawford
County

Infrastructure was another key aspect of this olzgeEmal study. Specific issues that
were noticed at these intersections included thegwhent of lanes, medians, and traffic
signals. Many of these observations are intersecpecific, such as the turning lane
shown in Figure 10 (C4). Almost every intersectlas a different type of layout for
their turning lanes. The majority of these turniages appear on road segments that
are intersecting an interstate. Traffic traveldayvn the main roads needing to get onto
the interstates must then get into one of thesertgrlanes. Figure 10 is an example of
a particularly bad turning lane, because of ite simd crookedness. This turning lane is
barely large enough to contain one regular sizédcle at best. This may potentially
cause traffic to back up in the main traffic larsasiply because there is not enough
space for vehicles to pull out of the main lingrafffic to turn.
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Figure 10: Small Turning Lane (C4) — Location 11, Brt Smith, Crawford County

Figure 11: No Turning Lane (C4) — Location 20, Norh Little Rock, Pulaski
County

Many of the better intersections contained lorigening lanes. Some of these
stretched completely under the overpass so tha@line of cars could build up in the
turning lane without interfering with the main ftiiaf flow. Figure 11 shows an
example of a busy intersection that does not cordaurning lane at all (C4). Traffic
is still directed by a traffic light, and the lightiows for cars in the left lane to turn left.
Yet, all the cars travelling along this highway musit for these turning cars to turn
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before they proceed further. This in turn causa®re congestion and traffic build up

along this road.

Figure 12: Median Before On Ramp (C5) — Location 1Alma, Crawford County

Figure 13: Median in Intersection (C5) — Location 2, Pine Bluff, Jefferson County

Other than the placement of lanes, another infnagiral issue discovered
during observations was the placement of mediansgalthe roads (C5). These
medians were originally designed to separate lanesto better direct traffic. For the
most, the medians do this job well. Nevertheléesse medians are also obstacles
placed on the road. Some medians found aroundn&dsado not even seem to have a

practical purpose, as shown in Figures 12 and TBey may be attempting to direct
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traffic, but they seem to get in the way of traffiore than they should. This is evident
by the several tire marks and cracks along the amsdshowing that vehicles drive over
or hit the obstacle frequently. During the obséorg this was even verified by a

number of cars continued to run over these medians.

Figure 14: Larger Median (C5) — Location 15, LittleRock, Pulaski County

Because medians are an obstacle in the road, iharpotential for them to be involved
with many accidents. For smaller medians like ¢himsFigures 12 and 13, drivers may
end up losing control of their vehicles if they rawver them. Larger medians, like the
one shown in Figure 14, may present a greater ddongelamage if they are run into.
Also, as an unintended side effect of these largdiams, which often stretch for great
distances, is that they typically do not allow \aé$ to turn around very easily. This
type of barrier may increase the situations whereeds ignore street signs and lane
markings when there is a break in the median, thereasing illegal turning situations.
Several illegal turns were witnessed during thislgtaround roads containing medians.
These medians simply block the drivers from drivimghe ways they are comfortable.
Because all of the observed sites were intersecétated, a large proportion of
the issues discovered were traffic signal relat@gl)( These traffic signals are the main
source of directing right-of-way situations. Howeyin order for these signals to direct
traffic well, again they need to be clearly visibldn general, a four-way signaled
intersection will contain four distinct traffic sigls above each road. This is the design
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that most drivers come to expect. Figure 15 shaveeviation from this design that
might cause some confusion to drivers. The figsihews a four-way intersection,
which contains four traffic lights, but with a ghdy different orientation. One of these
traffic lights was placed over the corner of twaads, rather than above the road. The
light is no longer directly in front of the drivewhere their vision is hopefully more
concentrated. Also, because the light is at adearnlyere is an increased glare which
makes the visibility worse.

Older intersections and street lights also appetrarhuse some issues. Along
with its odd orientation, the signals shown in Fegd5 appeared to be much older than
most traffic signals. One observation made at ihisrsection was that these traffic
signals were not very sturdy. The wind causedpbles, on which the signals were
located, to move and bend quite frequently. Thoastant movement of the signal
made focusing on the lights much more difficult. ofd modern traffic signals are
reinforced with materials that prevent this movemefinother example of this issue is
shown in Figure 16. This is an intersection lodad@ectly over a railroad track (C7).
Due to its location, the traffic signals were susped by a cord, rather than a pole.
This situation caused even more movement with ifjfetd. Often times during the
observations, these signals would turn sidewaysobwiew from the drivers directly
ahead of the lights. When the wind blew strongugig drivers could not even focus

on the color or state of the traffic signal.

Figure 15: Traffic Signal on Corner (C6) — Location12, Fort Smith, Crawford County
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Figure 16: Traffic Signals on Cord (C6, 7) — Locatin 8, Dumas, Desha County

Figure 17 shows a condition where the traffic signfrastructure did not match
up with the road infrastructure (C3 and C6). Tihigersection was the source of a lot of
poor driver behavior, simply because drivers as$ thtersection did not know what to
do.

Figure 17: Poor Signal Layout (C3, 6) — Location 14Little Rock, Pulaski County

The figure shows a road which is actually a tweelaoad. There is not a turning lane
for traffic traveling in the direction pictured. €Y, above this road there is a traffic
signal with four lights, implying at least threen&s, possibly four lanes. The light to
the far left is actually a light designed for artimg lane, for which there is none. Cars

traveling in the left lane have two traffic lighthat they can potentially follow.
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However, these lights often do not work well togethThe light to the far left may be
red to imply that the vehicles cannot turn left,andls the light next to it may be green
to show that cars can still travel straight. Thelgbem is that there exists both a red and
green light for one lane, which confuses driver$he vehicles wanting to travel
straight, and who have the right-of-way, may feepulse to stop due to the red light.
The situation is overall not a good one for comroating information to the drivers
and keeping them aware.

Visibility was often limited at areas such as ow&ges, access roads, and on/off
ramps (C8). The overpass in Figure 17 is comparabmany in the state of Arkansas,
which contain barriers directly under the bridge ®&upport. Often times, these
columns and barriers obstruct the view of the devalong the main road, or even
drivers getting on the highways from the off rampEhey restrict the visibility of the
road and specifically the traffic flowing in the mgsite direction. Drivers who pull out
onto the road may not notice cars coming from urttler overpass at high speeds,
further increasing the chance of a collision. Awmotsimilar case of this issue was
shown on access roads and on/off ramps. Vehickesanstantly trying to merge onto
high speed highways or interstates where theriétles r no room to do so (C9). Small
merging lanes cause problems for vehicles thatatagain enough speed or that do not
have the capacity of entering a stream of traffdso, blind merging lanes or lanes that
are located around curved roadways, large buildiogsther objects cause the problem
of visibility for these merging vehicles.

Other minor issues observed during the study ireduithe affect of traffic lights
on driver behavior (C10 and C11). Today, manyfitadignals change from green to
red based on a sensor that moderates the traffum@ at each road. Because the
sensors are based on the arrival of the vehiclesy are much more responsive to
traffic patterns. Older traffic signals do not udes system, and use timed traffic
signals instead (C10). These traffic signals hawpecific duration for each red and
green light at each end of the intersection, whuchtinue to cycle throughout the day.
However, this system does not take into account tbkime of traffic at the
intersection. A timed intersection may have ndfitaat all, but the lights will still

cycle through. This causes a problem, howeverwredfic volumes are heavy on one
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road, and not on the intersecting road. The tiiglat will cause the main flow of
traffic to start and stop when there may be no ne@dsignal working on a sensor
system will not stop the main traffic until onerapre cars arrive along the intersecting
street.

Traffic light duration is another issue that affecriver behavior along traffic
signals (C11). Location 11 (Fort Smith, Crawfordu@ty), Location 13 (Jacksonville,
Pulaski County), and Location 20 (North Little Ro&ulaski County) are all examples
of lights which exhibit significantly long red ligh along their intersections. Some of
these lights range up to a minute or a minute ahdlfa The reason this was observed
as an issue was due to the number of drivers #ratyellow and red lights at these
intersections. It was observed that long red sghsually led to short green lights.
Drivers who are aware of this and who are in ayhaoray feel more inclined to run the
light than at lights with more moderate light dimas. At the Fort Smith intersection
(Location 11), five different vehicles were obseatwanning through a red light.

The final and most important portion of the obsgianal roadway analysis was
focused on driver behavior. Studying driver bebavlike many other studies in the
past, was shown to be quite difficult. The obstores that were made resulted in some
interesting trends in driver behavior with regaraisnany situations. For the most part,
these trends dealt with the situations that wee¥ipusly mentioned. Driver behavior
was found to be strongly tied to the conditiongh# road and intersection, including
signage, lane markings, traffic signals, and irftagure. Some examples include the
drivers’ actions at the traffic signals given theaunt of information that was presented
to them. Figure 17 is a good example of what dsvwended to do in situations where
there were no signs, no lane markings, and a pdaastructure. The white car in this
figure needed to turn left, yet they only realizbat there was no turning lane after
they had pulled into the middle of the intersectiomhis situation did not cause an
accident, but shows how there could potentially dve accident. Improper turns,
signals, lane changes, and stops are all commoavimk observed at this type of
intersection. These issues were not observedynaarmuch at the better intersections

that provided drivers with a lot of information.
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Figure 18: Cell Phone Distraction

Driver distraction was the most difficult aspect these observations to
measure. There exist far too many obstacles teeraakaccurate estimate of this driver
behavior. However, some trends were found durlg study. Cell phone use, as
expected, was a frequent issue at every intersef$ee Figure 18).

There was a small trend of cell phone usage depgnuin the size of the city
observed. The Little Rock and Fayetteville aredsthe state had several more
instances of cell phone usage than smaller citieb s Van Buren, or Pine Bluff. In
fact, there was more of a trend with the numbepadsengers throughout these cities.
Smaller cities tended to have more drivers witHeaist one passenger, whereas the
larger cities tended to have more single persoivindraround. There appeared to be a
direct correlation with the number of passengeid &hether the driver was talking on
a cell phone or not. One obstacle in the way oflwhg these driver distractions was
the fact that several cars now have tinted windowsivers cannot be seen through
these windows, let alone the distractions goingirside the vehicle. Observations
were also difficult to make because of the weatheing the week long study. The
weather was cold and wet throughout most of thekywedich caused many drivers to
have their windows rolled up, further preventingw@wate depictions of the distracting
behavior.

Despite these obstacles, several instances oérddistraction were observed.
These include eating, drinking, reading, textingtating movies, smoking, searching

around the vehicle, talking to passengers, talkinth other drivers or pedestrians,
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applying makeup, and driving with a pet or aninrathe front seat. These results are
comparable to studies done in the past. It ifistpportant, though, to emphasize these

as problems that are still happening and aredsitigerous.
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CHAPTER VI - GENERAL DISCUSSION AND CONCLUSION

6.1 General Discussion

By combining the results of both the statisticald aobservational analyses,
several insights towards the road traffic safetyAdfansas can be made. On the one
hand, these two methods work together and help asipd the aspects of road traffic
safety that they have in common. Both studies Isnmvn that road infrastructure and
the road’s surroundings are significant factorsht safety of the driver. Statistically,
factors such as road condition, road width, horiabourvature, and vertical curvature
were all shown to be significant in determiningstrdrequencies. In a corresponding
manner it was discovered during observations thay laspects of dangerous
intersection locations were poor road conditioresyow roads, and visibility obscured
by horizontal or vertical curvature.

On the other hand, each method gives its own unpgrspective of traffic
safety. The limitations of the statistical studyymactually be the strength of the
observational study, or vice versa. But they carubed together to compensate their
limitations by filling in some of the gaps found tineir stand-alone results. Statistical
analyses are great for determining predictabilind darends between the numerous
factors involved in road traffic accidents. Thisegictability is difficult to simply
observe in any roadway setting, and thereforeliigation of the observation analysis
that is compensated in the statistical methodst ddty can the mathematical methods
develop predictive models and trends, but it cao detect changes within these trends.
The Arkansas data analysis showed that the Coantshich crashes occurred followed
a significant trend for 2003, whereas it the tréaided to be significant in 2002 and
2004. Quantitative aspects like these are difficialt physically observe. These
guantitative capabilities are the strong point détistical analyses. Physical
observations, however, have the increased abilifinding potential crash hazards that
are not represented within the data. Informatiegarding sign visibility, driving
patterns, and detailed driver behavior are all etspthat can be observed through a

proactive method of roadway examination. The dsthmited and does not contain
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these highly detailed factors. Human factors dmawgs questionably recorded in
historical data, because officers at the scenendc@ident may not know if the driver
was talking on their cell phone or falling asleeghe wheel. Many human factors are
based on the actual observation of drivers in thelmcles.

Overall, the combined effects of the statisticall atservational analyses show
vastly superior results as compared to any of thethod's stand-alone results.
Together, these methods have resulted in an imdrenvelerstanding of road safety

with Arkansas.

6.1.1 Recommendations

Together, the statistical results and the obsemwal results show that the
physical design of the road is essential to roaffitr safety. Based on these results, it
should be recommended that extra attention and barenade to the design and
construction of roads throughout the state. Spedly, road and lane widths need to
be made large enough for drivers to feel comfogadhd also to reduce potential
contact between vehicles. Vertical and horizontalves obstruct the driver’s field of
vision, and so it should also be recommended titaté roads avoid as much curvature
as possible. Roads should be kept up regularlavimid poor conditions such as
potholes, cracks, or even worn lane markings. Bsearash frequency increases with
additional traffic volume, extra lanes should besidered for roads with particularly
high ADT values. Of course these infrastructumdigns come at a price, but because
of the number of potential lives saved as a reshk, benefits should automatically
outweigh the costs.

On the other hand, human factors are the chedapestffectively change.
However, it is not up to a design, but rather tleespn to make the changes. It was
found that the number of vehicle passengers cooredp to the crash severity. The
additional passengers may serve as potential digires to the driver, which may even
be comparable to cell phone conversations. It dolkrefore be a recommendation of
this study to avoid these potential distractiongwht all possible for the driver. Other
simple recommendations would be for drivers to gsvwaear their seat belts and never

drink alcohol and drive.
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To improve the effect that road infrastructure andd surroundings have on
human factors, it should be recommended that signsignals, and lane markings be
made as clear and visible as possible. Traffinagshould be based on traffic signals
in order to be more responsive to traffic flow patis and avoid potential issues of
vehicles violating the signals.

The final recommendation for this research ishiertdescribed as a limitation of
the current analysis. The recommendation is f@& ithprovement in data quality
collected throughout Arkansas. The reasoningtice heed is described more fully in
the following section containing the limitations thie study. Basically, more complete
data is required to develop more complex and moeanimgful models. The more
improved the data becomes, the better fit the sdieél models, and the better the

knowledge of road traffic safety in Arkansas widdome.

6.1.2 Limitations of Study

The statistcal analyses of this research were moesextent very limited. The
study was performed based on the data retrieved the crash and roadway databases
for Arkansas during the periods between 2002 an@420 Both databases were
extremely vast and comprehensive, but very oft@onmplete or insufficient. For the
Poisson and Negative Binomial models, data was haedd on crash frequencies along
US highways, state highways, and interstates oiflyis was due to the fact that crash
locations were only given sufficient detail for seeroads. Specifically, these were
roads that contained unique values for the rowgetien, and logmile categories. City
and county roads, which make up the vast majofiitihe traffic accidents throughout
Arkansas, only contain a route value. Often tities is a single road, street, or avenue
and does not have a standard format. One stregtpaizntially contain four or five
different variations on its name, and thereforeraggting crash frequencies along
these roads are made nearly impossible. Manyesnirad to be left out of the analysis
due to this limitation.

Another important limitation was the fact that soaspects of the crashes have
yet to be recorded at all. This includes the driwbo takes the fault of the collision,

which could potentially help in determining thedrtactors involved with causing an
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accident. Currently, all individuals present ataa accident are recorded within the
crash database. Essentially, the best resultbedaund using those drivers who were
to blame for the collision, rather than biasing ta#a by including all of the innocent

bystanders.

6.1.3 Future Areas of Study

One major area that should be explored in additiothe current study is the
possibility of more complex statistical models. eTlstatistical fits of the three
developed models were relatively fair, however saatterations to the models may
present better or more accurate results than tloasel in this study. Models that may
present a better fit to the Arkansas crash dataherédierarchical Logistic or Poisson
models which take into account the natural nestingassengers within vehicles within
crashes. The current analysis did not use thisingegeature, which is an important
application to road safety models. Also, Zerodtdld Poisson models may also show
better fits to crash frequency data with exceseser the response variable. Due to the
limitations of the current study and the softwaexkages available, neither of these
complex models was developed for this data.

Also, due to time constraints the observationadlyses only took place at
intersections that were deemed dangerous basdaeonctash rating. A future area of
study could be the examination and observation afenvarieties of road intersections.
This could include some good intersections, somar,pand some in between. Also,
future studies should explore the option of obsegvdifferent road sections. The
current study focused completely on intersectiovisgreas future areas could focus on
all road junction types. Essentially, the morealbans observed, the better the

resulting insights on road traffic safety become.

6.2 Conclusion

The risk of road traffic accidents, which has beecreasing tremendously
throughout the past decade, is a major issue tib for improved road traffic safety
measures. Arkansas, which ranks third highegtaiifi¢ fatalities nationally, is one key
area that calls for an evaluation of traffic safetps of yet there has not been an

extensive study to evaluate the traffic safetydeeand factors for the state. This is an
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important area to focus on, mainly because roaffidraccidents are not consistent
throughout the country, and each state has its tremds and issues (US Census
Bureau, 2004). Overall trends for the United Stateay not be representative of the
individual state. Historically, the two main metlsoof evaluating road traffic safety
are through the use of statistical analysis ofdnisal data and the experimental,
observational based analysis of road systems. Bwthods are used in determining
the potential root causes of road traffic accidemtbich can in turn be prevented
through proper information, planning and road desig

Within each accident there are hundreds of potefa@ors that could have an
effect on the drivers and the vehicles involvedhede factors can include temporal,
environmental, geographical, infrastructural, vekac, or human elements that were
present at some point during the accident. To awgrroad traffic safety, it is
important to understand these factors, and someatetermine which of these factors
have the largest effect on the accidents that ooouhe roads. Statistically this is done
through the use of statistical models which taketdmical data and use it to predict
crash outcomes. Several potential models can ée tesevaluate crash outcomes, and
the proper choice of model is of the most imporeand-or the Arkansas crash and
roadway data, collected between 2002 and 2004¢ thredels were used to evaluate
these potential crash factors. The Poisson anditNegBinomial regression models
were used to evaluate crash frequencies along segthents of US highways, State
highways, and interstates. Also, a Logistic regias model was used to predict crash
and injury severities among all roads in Arkansabe results from these tests showed
that several factors are significant contributassctash frequencies and injuries in
Arkansas. Road width, number of lanes, pavememdition, horizontal curvature, and
vertical curvature were all shown to be significarftastructural factors effecting road
traffic accidents, whereas the type of surface waggnificant. Geographically, the
county and urban level of a location also showedstatistical significance in the
models. Weather and light conditions were showhednighly significant. Significant
human factors include the use of seat belts, copamof alcohol, the driver’s license
state, age, and the number of passengers involver gender was shown to be

insignificant in predicting crashes.
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The second method used in evaluating road tra#ffetg is through the use of
observational studies, which survey the entire raed surroundings, and the actual
driver behaviors. The quality of the findings frahese studies is much greater than
those found using mathematical models, but it $® ahore costly. There are several
practical applications with using this model, asgives the observer firsthand
knowledge of how the road and its users operatdondd these lines, this study
demonstrated a brief evaluation of roads througlfolinsas. In particular, the study
focused on intersections along road segments tlaae franked highly in crash
occurrences. Several aspects of the road andrdoefeavior were analyzed at these
intersections, including the infrastructure, sigaasignals, and driver reactions to road
and its surroundings. In general, it was found thany dangerous locations were due
to poor signage, worn lane markings, roadway olbestaand unclear right-of-way cues.
In summary, road traffic safety in the state of &wkas was examined and evaluated
using the current methods of statistical and olsemwal analyses. These results give
important insights and highlight particular areals dviver behavior and roadway
characteristics that effect road traffic accidghtsughout the state. With the knowledge
of these results and their limitations, steps caw be taken to further study these key

areas and begin the growing need for road traffiety in Arkansas.
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APPENDIX A: SPSS Coding and Output
(1) Poisson Regression 2002 Data

DATASET ACTIVATE DataSet1.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO
/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES
DISTRIBUTION=POISSON LINK=LOG
/CRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL
L
/MISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQITION CORB.
DataSetl] C:\Documents and Settings\Jacob MercskiDp\SPSS\Poisson2002I.sav

(2) Poisson Regression: 2003 Data

DATASET ACTIVATE DataSet2.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO
/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES
DISTRIBUTION=POISSON LINK=LOG
/ICRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL
L
/MISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQITION CORB.
DataSet1] C:\Documents and Settings\Jacob MercskiDp\SPSS\Poisson2003I.sav

(3) Poisson Regression: 2004 Data

DATASET ACTIVATE DataSet3.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO
/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES
DISTRIBUTION=POISSON LINK=LOG
/ICRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL
L
IMISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQITION CORB.
DataSetl] C:\Documents and Settings\Jacob MercekiDp\SPSS\Poisson20041.sav

(3) Negative Binomial Regression: 2002

DATASET ACTIVATE DataSetl.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO

/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES

DISTRIBUTION=NEGBIN(1) LINK=LOG



/CRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL

L

IMISSING CLASSMISSING=EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQITION CORB.
DataSetl] C:\Documents and Settings\Jacob MercekiDp\SPSS\ NegBin2002l.sav

(5) Negative Binomial Regression: 2003

DATASET ACTIVATE DataSet2.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO
/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES
DISTRIBUTION=NEGBIN(1) LINK=LOG
/CRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL
L
IMISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQ@ITION CORB.
DataSetl] C:\Documents and Settings\Jacob MercskiDp\SPSS\NegBin2003l.sav

(6) Negative Binomial Regression: 2004

DATASET ACTIVATE DataSet3.
* Generalized Linear Models.
GENLIN Frequency WITH DSTNO CONTY Length POPGR URBANCLA ADT NOLAN SURTY LNWID REC
ONS TERAN RDWID PAVCO
/MODEL DSTNO CONTY Length POPGR URBAN FNCLA ADTOLAN SURTY LNWID RECONS TERAN R
DWID PAVCO INTERCEPT=YES
DISTRIBUTION=NEGBIN(1) LINK=LOG
/ICRITERIA SCALE=1 COVB=MODEL PCONVERGE=1E-006(AB&UTE) SINGULAR=1E-
012 ANALYSISTYPE=3(WALD) CILEVEL=95 CITYPE=WALD LIKELIHOOD=FUL
L
IMISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SQITION CORB.
DataSetl] C:\Documents and Settings\Jacob MercskiDp\SPSS\NegBin2003l.sav

(7) Logistic Regression: All Variables

LOGISTIC REGRESSION VARIABLES CRASHSEVERITY_BIN

/METHOD=ENTER YEAR ATMOSPHERICCONDITIONS LIGHTCODITIONS RURALURBAN ROADSURF
ACECONDITION ROADSYSTEM ROADWAYALIGNMENT ROADWAYPR®IL

E WEEKDAY NUMBERINVOLVED ALCOHOLINVOLVED RESTRANTCODE SEX AGE INJURYSEVERIT
Y_ORD LICENSESTATE COUNTYNUMBER

/PRINT=CORR

/ICRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUTH).
[DataSet1] C:\Documents and Settings\Jacob MeresRdp\SPSS\Logistic Regression.sav

(8) Logistic Regression: Correlation Removed

LOGISTIC REGRESSION VARIABLES CRASHSEVERITY_BIN
/IMETHOD=ENTER YEAR LIGHTCONDITIONS RURALURBAN ROBSURFACECONDITION ROADSYSTE
M ROADWAYALIGNMENT ROADWAYPROFILE WEEKDAY NUMBERINVOLV
ED ALCOHOLINVOLVED RESTRAINTCODE SEX AGE LICENSETATE COUNTYNUMBER
/PRINT=CORR
ICRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUTE).
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APPENDIX B: Observation Locations

**All Locations Provided by Google Maps

Location 1: Alma, Crawford County

Intersection of US Highway 71 and Interstate 40

Observations made along US Highway 71

Details: Good visibility along roadway; Turning lan e for intersecting street
not long enough for more than one vehicle; Medianw ithin the roadway
designed for the turning lane acts as an obstacle




Location 2: Blytheville, Mississippi County

» Intersection of State Highway 18 and State Highway

* Observations made along State Highway 18

» Details: Good signage; Poor visibility due to hori
Several medians surround the traffic signal; Inters
perpendicular; Good merging conditions with separat
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Location 3: Blytheville, Mississippi County

Intersection of State Highway 18 and Interstate 55

ate 55
interstate; Poor
s along access road and

Observations made on access roads alongside Interst

Details: Dangerous merging along access roads and
visibility surrounding the overpass; Several median

interstate on/off ramps

e

“y
.ll-..n-|-m-|l

mmEE

O

—
wwen e Sunty Road 157
:.. ﬂu

wm, ;
|—|
llIlﬁﬂ-Ill.lll-Il [

Coun L o

L R T R L

AR V4% --.|.~
— @ B @ g e — IR

EEEEN NN EANENNENEEEEENREE,

s

v [

LR
Rl e,

]
-l-l“

100

B-3



Location 4: Blytheville, Mississippi County

» Intersection of US Highway 61 and Interstate 55

* Observations made along US Highway 61

» Details: Good signage; Good lane markings; Good vi  sibility; No traffic signal
located at on/off ramps




Location 5: Bryant, Saline County

Intersection of State Highway 183 and Interstate 30

Observations made on access roads alongside Interst  ate 30

Details: Dangerous merging along access roads and interstate; Several
intersecting streets along access road; High amount s of cell phone use
observed; Failure to yield also observed
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Location 6: Clarksville, Johnson County

Intersection of State Highway 103 and Interstate 40
Observations made along State Highway 103
Details: Poor lane markings along on/off ramps; Po
entire road; Narrow roads and turning lanes; Short
turning vehicles; Poor traffic signal infrastructur

e

or turning lanes along
yellow light durations for

N Potertd




Location 7: Dardanelle, Yell County

Intersection of State Highway 22 and State Highway
Observations made along State Highway 22

Details: Large medians surrounding as well as along
Poor signage and turning lane markings; Poor visibi
the intersection and ramps
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the entire roadway;
lity due to the width of

L CLL
L ew® ",

a N
LT A




Location 8: Dumas, Desha County

Intersection of State Highway 54 and Main Street
Observations made along State Highway 54

Details: Intersecting roads separated by an active
each road; Downtown area; Traffic signals suspended
sway in windy conditions and are not visible

railroad; Crosswalks along
from cords, which
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Location 9: Fayetteville, Washington County

» Intersection of US Highway 71B and Rock Street

* Observations made along US Highway 71B

» Details: Poor visibility; Vertical and horizontal ¢ urvature at the top of a hill;
No turning lane along the entire road; No traffics  ignal; Failure to yield and
improper turning prevalent along this road
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Location 10: Fort Smith, Crawford County

» Intersection of US Highway 71 and US Highway 64

» Observations made along US Highway 64

» Details: Traffic signals are on timers and are syn

One-way traffic along most of the roads; Poor signa
south part of road; Several crosswalk areas located

chronized with each other;
ge; Poor merging along
across the road
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Location 11: Fort Smith, Crawford County

Intersection of State Highway 255 and Interstate 54 0

Observations made along State Highway 255

Details: Poor traffic signal durations with long r ed lights and short green
lights; Parallel turning lanes under overpass; Shor t, crooked turn lane at on
ramp; Improper turning and running yellow lights ob served at intersection
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Location 12: Fort Smith, Crawford County

» Intersection of State Highway 255 and US Highway 27 1

» Observations made along US Highway 271

» Details: Angled intersection; Traffic signals are crooked and sway in the
wind; Lane markings only; No crosswalks along road, despite high

pedestrian traffic
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Location 13: Jacksonville, Pulaski County

« Intersection of US Highway 67 and 1 %' Street

« Observations made along 1 * Street

» Details: Angled intersection due to large horizont al curvature; Poor visibility
around overpass; Poor traffic signal infrastructure ; High traffic volumes at
peak periods; No turning lanes onto highway




Location 14: Little Rock, Pulaski County

» Intersection of State Highway 365 and Interstate 30

» Observations made along State Highway 365

» Details: Conflicting information with traffic sign al and infrastructure; Poor
sighage and traffic signals

B-14




Location 15: Little Rock, Pulaski County

Intersection of Rodney Parham Road and Interstate 4 30

Observations made along Rodney Parham Road

Details: Poor visibility due to vertical curvature along highway and hills
around on/off ramps; Several medians along the road  way acting as
obstacles; Poor merging due to short lanes right al ong the off ramp
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Location 16: Marion, Crittenden County

Intersection of US Highway 64 and Interstate 55

Observations made on US Highway 64 and access roads alongside 1-55
Details: Several medians surrounding and along the highway; Poor traffic
signal infrastructure; Poor merging when roads narr ow on either side of road
segment; Access roads along either side of intersta  te
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Location 17: Marion, Crittenden County

* Intersection of State Highway 77 and State Highway 191

* Observations made on State Highway 77

» Details: Angled Intersection; Medians surrounding roadways; Lane markings
worn beyond visibility; Two lane road appears to be only one lane; No
signage located at these roads




Location 18: North Little Rock, Pulaski County

Intersection of US Highway 67 and McCain Blvd.
Observations made on McCain Blvd. and access roads
Key Problems: Good signage; Poor visibility due to

Numerous crosswalks along roadway; Failure to yield
observation

alongside US 67
vertical curvature;
common during
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Location 19: North Little Rock, Pulaski County

» Intersection of US Highway 70 and Main Street

* Observations made on US Highway 70

» Details: A Trolley line crosses this intersection,
through traffic; Intersections are set with a timer
each corner of the intersection; Pedestrian traffic

which runs periodically
: Crosswalks are located at
signals also on a timer
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Location 20: North Little Rock, Pulaski County

» Intersection of US Highway 70 and Interstate 30

* Observations made on US Highway 70

» Details: No turning lanes towards on ramps; Diffic ult merging along access
roads coming onto the highway; Long red light durat ions; Several observed
drivers running yellow lights

e 4

o ill

| |

_Edth

.|: E Broy




Location 21: Pine Bluff, Jefferson County
Intersection of State Highway 15 and East Harding A
Observations made on East Harding Avenue
Details: Good lane markings; Two one-way roads par
merging of parallel roads; Medians along the roadwa

Poor visibility due to surrounding wooded areas

venue

allel to each other; Poor
y that act as obstacles;
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Location 22: Pine Bluff, Jefferson County

* Intersection of US Highway 79 and Interstate 530

* Observations made on US Highway 79

» Details: Good signage and lane markings; Great vis ibility; Parallel turning
lanes under overpass; Failure to yield prominent du ring observation
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Location 23: Van Buren, Crawford County

Intersection of US Highway 64 and Interstate 540

Observations made along ramps on both I-540 and US  Highway 64
Details: Four roundabout exit ramps for merging al ong each road; Difficult
merging along these ramps; Poor visibility and road side information also
along these ramps
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Location 24: Van Buren, Crawford County

» Intersection of State Highway 59 and Interstate 40

* Observations made on State Highway 59

» Details: Poor traffic signal infrastructure at on/ off ramps; Turning lane
underneath the overpass too short for traffic trave ling in both directions




Location 25: Van Buren, Crawford County

» Intersection of State Highway 59 and Interstate 540

* Observations made on State Highway 59 and exit ramp s to I-540

» Details: Numerous signs along on/off ramp; Conflic ting information between
lane markings and signage; Several medians surround ing roadway
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Location 26: White Hall, Jefferson County

» Intersection of US Highway 270 and Interstate 530

* Observations made on US Highway 270

» Details: Good signage and lane markings; Good visib ility; Poor merging
following on/off ramps; Failure to yield common dur ing observations




