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Abstract 

Forced transfer busing occurs primarily at the elementary school level when students are bused 
to an alternate school when their geographically-assigned school is full at their specific grade 
level. Ineffective forced transfer busing can result in extra student travel time and inefficient use 
of often scarce transportation resources. In fact, some force transferred students regularly arrive 
to their alternate school after morning classes have started due to inefficient transportation 
practices. We examine various forced transfer busing network design strategies using actual 
public school system data from two school districts to assess various proposed solution 
methodologies effectiveness at developing practically implementable busing solutions in a 
realistic amount of time. In addition, preliminary models and analysis are presented for special 
needs busing problems in one local school district such that student travel time is minimized for 
these often medically-fragile children. 
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1 Introduction 

When a city’s growth rate significantly increases in a short period of time, the school 

district of that city is often faced with difficulties allocating students to schools. Usually, a 

school will reach maximum capacity before all students in that school’s zone have been enrolled. 

The remaining students are then forced to attend a school in a different school zone. Transferring 

these students not only requires extra buses and thus extra costs, but also frequently results in 

thirty to sixty minutes of lost instructional time for the students. Forced transfer students are 

usually required to leave for school up to two hours before their school start time, wait on their 

bus and at other schools for long periods of time, and then still arrive late to their own school. 

Unfortunately, forced transfer students are generally elementary school students. Therefore, 

these students, who travel and wait for nearly two hours with little supervision, range in age from 

five to twelve.  

In Springdale, Arkansas there are approximately 170 of these students. The Springdale 

School District is currently the third largest school district in the state. The district has grown 

62% in the last ten years, with most of the growth concentrated on the east side of town. 

Springdale currently has twenty-two schools, sixteen of which are elementary schools. To 

accommodate the growth, the city is planning to build one new school per year for the next ten 

years. In the meantime, the district is struggling to manage school capacity, bus routing and 

scheduling. Other large school districts in the Northwest Arkansas area use advanced GPS 

technology to effectively route their buses; however, Springdale lacks the available resources for 

this technology and resorts to less effective modes of routing. This research is an attempt to find 

a less expensive solution to the problem of routing forced transfer students in school districts 

with fewer available means. 
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In Fort Smith, Arkansas there are currently 185 students being force transferred at the 

elementary level. The Fort Smith School District is right behind Springdale, as the fourth largest 

district in Arkansas. The problems Fort Smith must address are similar to those in Springdale. 

Population growth, along with parental requests for transfer, have caused demand to exceed 

capacity for many of the nineteen elementary schools. This deficit is overcome by transferring 

students across town, incurring additional costs and resulting in lost education time. With the 

currently suffering economy, it is as important as ever to use resources wisely and efficiently, 

and student classroom time is always a priority. This research attempts to determine the best way 

to minimize transportation costs without sacrificing classroom time. 

 

2 Previous Research 

In conducting this research, previously researched network design strategies were first 

investigated. Two of these strategies were then used with developed models to analyze real 

world data. The following describes the network design strategies studied and outlines the two 

models chosen to analyze the data. 

Previous forced transfer research has consisted of four main network design strategies. 

These strategies are direct pairwise, hub-and-spoke, hybrid and circuit. Examples of each design 

are shown below in Figure 1. In the direct pairwise strategy, a bus is sent from each school to 

every alternate school where demand occurs. In the hub-and-spoke strategy, buses are sent from 

each school to a common location, one of the schools, which is called the hub. Buses then travel 

from the hub to all other schools as demand occurs. The hybrid strategy is a combination of the 

direct pairwise and hub-and-spoke strategies. Demand for transfer from a student’s home school 

to an alternate school is met either by direct transfer or through the hub. In circuit routing, buses 
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travel in a loop pattern from school to school. Each school can be visited only once in a circuit. 

The most basic circuit route that satisfies demand to and from each school has two buses with 

bus one traveling from school 1 to school 2, 3, 4, etc. and the second bus simultaneously 

traveling in the reverse order. 

 

 
  

Direct Pairwise Hub and Spoke Hybrid Circuit 

    

Figure 1.  Network Design Strategies 

 

2.1 Hub-and-Spoke Literature 

2.1.1 Pure Hub-and-Spoke Networks 

Research concerning hub-and-spoke networks is mainly focused on the hub location 

problem. The hub location problem involves two decisions: locating hubs and assigning non-hub 

nodes to hubs. In addition, there typically are three assumptions for the hub location problem:  

 The network is complete with a link between every node pair. 
 There are economies of scale expressed as a discount factor (α) for using inter-hub 

connections. 
 No direct service (e.g., between two non-hub nodes) is permitted. 

 

Bryan and O’Kelly (1999) classify the hub-and-spoke problem further into two classes: single 

assignment and multiple assignments. Single assignment means that each node can only be 
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connected to one hub and vice versa, whereas multiple assignments allow each node to be 

connected to more than one hub. For both types of hub-and-spoke problems, inter-hub 

connection is also permitted when multiple hubs exist. Bryan and O’Kelly (1999) summarize the 

hub-and-spoke literature to date in Table 1. 

 

Table 1. Analytical Research on Hub-and-Spoke Networks (Bryan and O’Kelly, 1999) 
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O’Kelly (1987) first models the single assignment hub location problem as a quadratic 

integer program to minimize total network cost under the condition that all inter-hub links are 

fully interconnected. The network costs are described in three parts: 1) the travel cost from origin 

to hub, 2) the cost of traveling across the inter-hub link (if necessary), and 3) the travel cost from 

hub to destination. In O’Kelly (1987), travel costs on inter-hub links are independent of the 

amount of flow traveling across the link. In particular, although there can be more than one hub 

in the network, every node is assigned to a single hub. Many heuristics have since been 

developed to solve this quadratic program: 

 Exchange heuristic of Klincewicz (1991)—exchange hubs with non-hub nodes 
 Clustering heuristic of Klincewicz (1992)—first cluster nodes into groups, then assign a 

hub to each group 
 Greedy exchange based on maximum flow or minimum transportation cost by Campbell 

(1996) 
 Simulated annealing by Abdinnour-Helm and Venkataramanam (1992) 
 Genetic algorithm by Abdinnour-Helm and Venkataramanam (1993) 
 Tabu search by Skorin-Kapov and Skorin-Kapov (1994) 

 

To date, the Tabu search of Skorin-Kapov and Skorin-Kapov (1994) has achieved the best 

solutions. 

Rather than analyze the quadratic program directly, another popular approach is to 

linearize the quadratic model (Campbell (1994), Skorin-Kapov et al. (1996), O’Kelly (1996), 

Ernst and Krishnamoorthy (1996)). Tight linearizations of the quadratic program often can 

provide integer solutions without enforcing integrality requirements. However, the linearized 

model can only obtain exact solutions on relatively small problem instances (e.g., 25 nodes). 

Irnich (2000) expands the single assignment problem to include multi-depot pickup and 

delivery, narrow time windows, and heterogeneous vehicles. The task is to find a minimal cost 

set of trips. Irnich (2000) proposes a two-phase algorithm to solve the problem wherein phase 
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one enumerates all possible route combinations, then phase two assigns transportation requests to 

the combinations. The method of Irnich (2000) is limited by the number of hub stops on the 

route—this must be fairly small so that all possible routes can be enumerated easily. 

 

2.1.2 Hybrid Hub-and-Spoke Networks 

The hybrid hub-and-spoke network design problem can be classified as either a location-

routing problem or a pure routing problem. For the location-routing problem, Aykin (1995) 

investigates an expansion location-routing problem in which non-stop services are permitted. He 

builds a nonlinear model to minimize total distance traveled, and then decomposes the model 

into two subproblems: known hub location and known service type. On the basis of these two 

subproblems, Aykin (1995) proposes a heuristic that finds hub locations first, and then assigns 

nodes to hubs while simultaneously determining delivery routings. 

The pure routing problem deals with finding optimal routes for known hubs. Liu et al. 

(2003) develop a heuristic procedure based on the Clarke-Wright heuristic (1964) to solve a 

hybrid hub-and-spoke network with milk runs (i.e., more than one stop can be made during a 

collection or delivery trip). In their research, Liu et al. (2003) assume there is no fixed cost for 

operating a hub, nor any variable cost incurred when entering or leaving the hub. Further, Liu et 

al. (2003) assume that hub location is known and that there is an infinite supply of vehicles. Liu 

et al. (2003) prove that a hybrid system is better than both pure systems and that the demand 

distribution is the most important factor in hybrid system design. Finally, Chong et al. (2006) 

develop a heuristic procedure to solve the problem of scheduling and routing shipments in a 

hybrid system when a set of feasible, discrete inter-shipment times is required. In their heuristic 

procedure, the hybrid network design is determined via an enumerative strategy. 
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2.2 Circuit Routing Literature 

Another transportation strategy used in practice today to deal with forced transfer busing 

issues is to use additional, specialized bus routes to transport only forced transfer students.  In 

contrast to regular bus routes which drop off students at their base school, these bus routes travel 

from school to school within the district, picking up and dropping off only transferred students.  

In this circuit routing strategy, the forced transfer buses travel in a cycle or loop pattern, and 

each school can be visited at most one time on any circuit.  Therefore, students cannot be 

transferred to an alternate school previously visited on a given bus’s route. 

 Consider a simple circuit bus route with the route CBA  .  This means that the bus 

first visits School A, followed by School B, and then School C.  On this route, students can be 

transported from A to B, from A to C, and from B to C.  However, if a student needs to be 

transferred from School C to School A, another bus route would be required, as this is not 

possible on this current simple route. Therefore, all combinations of origins and destinations 

could be achieved by having two circuit routes running in opposite directions (i.e., CBA   

and ABC  ).  While this solution would clearly achieve the objective of minimizing the 

number of bus routes required, as more and more schools are added to the circuit bus routes, 

additional buses may be required in order to minimize total distance traveled and/or student wait 

time. 

 

2.2.1 The Vehicle Routing Problem with Pickups and Deliveries and Time Windows 

The forced transfer busing problem is similar to the Vehicle Routing Problem with 

Pickups and Deliveries and Time Windows (VRPPDTW).   In the VRPPDTW, all routes are 

required to begin and end at a common depot, and each vehicle has a capacity that cannot be 
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exceeded.  Also, time constraints are added that require service at any particular stop to occur 

during a specific time interval.   

Nagy and Salhi (2006) developed an integrated heuristic to solve the Vehicle Routing 

Problem with Pickups and Deliveries (VRPPD) in order to find a set of routes which minimize 

the total distance traveled by the vehicles, subject to maximum distance and capacity constraints. 

The basic integrated heuristic consists of four phases during which an initial feasible route is 

constructed and then improved upon using several improvement techniques.  In Phase 1, a 

weakly feasible solution is found using a route construction heuristic.  In this weakly feasible 

solution, both the total pickup and the total delivery of every route are below the maximum 

capacity constraint.  In Phase 2, this initial solution is improved upon while maintaining weak 

feasibility.  In Phase 3, the solution becomes strongly feasible, which refers to a solution in 

which the load for each individual arc does not exceed the vehicle capacity.  Finally, in Phase 4, 

this solution is improved upon while maintaining strong feasibility. 

This basic heuristic can be adapted to solve problems with multiple depots by applying 

the idea of borderline customers as used in Salhi and Sari (1997).  In this sense, a customer is 

considered borderline when they are located approximately half-way between two depots.  An 

initial solution to the VRPPD is found by first separating the borderline and non-borderline 

customers.  All non-borderline customers are assigned to the nearest depot and weakly feasible 

solutions are found for each resulting VRPPD.  Borderline customers are then inserted into the 

routes to provide an initial feasible solution, which can be used in Phase 2 of the integrated 

heuristic. 

 Several other heuristic solution approaches exist to solve the VRPPDTW.  A local search 

heuristic was presented by Van der Bruggen et al. (1993) for the single vehicle problem with 



 

  9 

minimizing route duration as the objective.  This method involves two phases:  constructing a 

feasible route and then iteratively improving upon the solution.  The work of Ioachim et al. 

(1995) focused on a clustering algorithm in which customer proximity is used to group 

customers in order to simplify the routing problem.  Lastly, Bent and Hentenryck (2006) 

introduced a two-stage hybrid algorithm for the VRPPDTW.  The first stage aims to minimize 

the number of routes required using simulated annealing, while the second stages attempts to 

minimize travel costs using a large neighborhood search. 

 

2.2.2 The Dial-A-Ride Problem  

The Dial-A-Ride (DARP) problem is similar to the VRPPDTW, except that the requested 

transport involves persons, rather than goods.  This is a typical problem which applies to the 

transportation of the elderly or disabled in urban areas.  In the DARP, users make requests for 

transportation from a specific origin to a specific destination, and transportation is carried out by 

vehicles based at a common depot.  Also, time windows are pre-specified which bound the 

arrival and/or departure time of the users.  The DARP is NP-hard because it generalizes both the 

VRPPD and the Traveling Salesman Problem with Time Windows (TSPTW) (Cordeau 2006). 

DARP problems are unique in that operating costs and user inconvenience often are 

weighted against each other when designing a solution.  When referring to operating costs, fleet 

size and travel distance are minimized.  When referring to user inconvenience, deviations from 

desired pickup and drop-off times and excess ride time are minimized.  Typically, these 

competing objectives are balanced by minimizing operating costs subject to service quality 

constraints.  Therefore, the overall goal of the DARP is to design a set of least cost vehicle routes 

which satisfy capacity, duration, time window, and ride-time constraints. 
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Several route construction and improvement heuristics have been developed for the 

DARP.  Jaw et al. (1986) develop an insertion heuristic which takes time windows directly into 

account by balancing the preferences of the users with the costs of operation.  In this heuristic 

algorithm, transfer requests are selected and inserted into the vehicle schedule in order of 

increasing earliest pickup times.  Cordeau and Laporte (2005) proposed a tabu search 

metaheuristic for the DARP.  Their algorithm begins with an initial feasible solution, and then 

moves to the best solution within the neighborhood of the current one.  Neighborhood evaluation 

is based on minimum route duration and minimum ride times.  Cycling back to previously visited 

solutions is avoided by preventing the algorithm from proceeding to a solution that is considered 

tabu. 

Cordeau (2006) introduces a mixed-integer programming formulation to find a set of 

routes that minimize total routing cost while satisfying capacity and service constraints.  Several 

valid inequalities which strengthen the LP-relaxation of the model are also described for use in a 

branch-and-cut algorithm.  Before the branch-and-cut algorithm is applied, several preprocessing 

techniques are performed to reduce problem instance size.  Next, the algorithm first solves the 

LP-relaxation.  If the relaxation solution is integer, then the optimal solution has been identified; 

otherwise, an enumeration tree is developed, and separation heuristics are used at each node in 

the tree to identify violated valid inequalities.  If one or more violated inequalities are identified, 

the cuts are applied and the relaxation model is solved again.  If no violated inequalities can be 

found at a particular node, then the algorithm stops processing at that node.  This branch-and-cut 

algorithm is not suitable for large-scale problem instances; however, on small to medium-size 

instances, the algorithm reduces both computation time as well as the size of the branch-and-

bound tree. 



 

  11 

 

3 Mathematical Models for Forced Transfer Busing 

3.1 Hybrid Hub-and-Spoke Model 

Based on our literature review, it is clear that hybrid hub-and-spoke networks are at least 

as good as (and often better than) pure hub-and-spoke and direct busing network designs, as the 

hybrid strategy accommodates both of these approaches in a single methodology. Therefore, we 

now develop a mathematical program for hybrid hub-and-spoke forced transfer busing that 

allows for both hub-and-spoke and direct bus transportation between schools (nodes). In this 

initial model, we assume that buses do not make any intermediate stops between leaving their 

origin and arriving at their intended destination (i.e., the hub or another school when performing 

a direct transport). 

For both objective functions, we seek to minimize the performance measure. Therefore, 

two independent optimization models, each with its own objective function, have been 

developed. In both model cases, the following assumptions are made: 

 Each bus has a single, primary pick-up and drop-off location. 
 There exists a finite number of buses available for routing, each of which has an infinite 

capacity for students.  
 Demand between each pair of schools cannot be split across multiple transportation 

resources (e.g., all demand from location i to location j must be accommodated on the 
same bus). 

 

3.1.1 Notation 

Sets and Parameters 

N  Set of all nodes,  nN ,...,1  

jid ,  Distance (in miles) from node i to node j ( NjNi  , ) 

jit ,  Bus travel time from node i to node j ( NjNi  , ) 

jiQ ,  =1 if there exists student forced transfer demand from node i to node j; otherwise, 

=0 ( 0,, ,  iiQNjNi ) 
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ib  Time a bus leaves school i ( Ni ) 

s  Start time for all schools 
r  Number of buses available 

dn  Number of demand pairs (
i ij

jiQ , ) 

 

Decision Variables 

jix ,  =1 if students are transferred from node i to node j directly; otherwise, =0 (

0,, ,  iixNjNi ) 

jiy ,
 =1 if students are transferred from node i to node j through the hub; otherwise, =0 

( 0,, ,  iiyNjNi ) 

iz  =1 if node i is chosen as the hub node; otherwise, =0 ( Ni ) 

jio ,  =1 if a bus is used to transfer students from node i to hub j; otherwise, =0 (

jiNjNi  ,, ) 

jie ,
 =1 if a bus is used to transport students from hub i to node j; otherwise, =0 (

jiNjNi  ,, ) 
v Total transportation miles, 0  

j
w  Hub departure time of bus bound for school j ( Nj ) under the leave-when-ready 

hub policy, 0  
δ Time buses leave the hub under the leave-simultaneously hub policy, 0  
f Number of buses used at the hub, 0  
h Number of buses used for direct transport, 0  
L Maximum lateness of all the buses, 0  

iu  Arrival time of bus travelling from node i to the hub ( Ni ), 0  

jik ,
 Arrival time of bus transporting demand pair (i, j) directly ( NjNi  , ), 0  

jig ,
 Arrival time of bus transporting demand pair (i, j) through the hub ( NjNi  , ), 

0  

jia ,  Number of minutes bus travelling from node i to node j is late ( NjNi  , ), 0  

 

3.1.2 Mixed-Integer Program 

The objective is to minimize total transportation miles as shown in objective (1) or minimize 

maximum bus lateness (#2). The secondary objective terms in each objective function are scaled 

by 0.001 as a means of breaking ties when alternative optimal solutions exist.  

min Lv 001.0   (1) 
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min vL 001.0   (2) 

 

Constraint set (3) guarantees exactly one and only one hub exist.  

 1
i

iz  (3) 

In addition, a lower bound on the number of hubs is given by constraint set (4). 

 
d

i j
ji

i
i nyz )( ,   (4) 

Constraint set (5) assures student forced transfer demand must be satisfied either via direct or 

indirect (i.e., hub-and-spoke) bus transportation. 

jijiji Qxy ,,,   NjNi  ,  (5) 

Upper and lower bounds for decision variable jio ,  is computed by constraint sets (6) and (7). 


l

liji yo ,,
 NjNi  ,  (6) 


l

jlji ye ,,
 NjNi  ,  (7) 

Upper and lower bounds for decision variable jie ,  is computed by constraint sets (8) and (9). 

1
,

, 
















j
l

li

ji zn

y
o  NjNi  ,  (8) 

1
,

, 
















i
l

li

ji zn

y
e  NjNi  ,  (9) 

Next, constraint set (10) allows that at most one bus can leave from each node i, while constraint 

set (11) permits at most one bus to arrive at each node j. 

1, 
j

jio  Ni  (10) 



 

  14 

1, 
i

jie  Nj  (11) 

On the basis of the values of the decision variables jio ,  and jie , , the total number of buses used 

in hub-and-spoke transportation is calculated by constraint sets (12) and (13). 


i j

jiof ,
 (12) 

 
i j

jief ,
 (13) 

Similarly, constraint set (14) calculates the number of buses used for direct transportation. 

 
i j

jixh ,  (14) 

Constraint set (15) guarantees that the total number of buses used does not exceed the number of 

buses available. 

rhf   (15) 

Constraint sets (16) and (17) calculate the arrival time of the bus travelling from origin location i 

to the hub. Specifically, constraint set (16) focuses on the demand pairs originating at schools 

rather than the hub, while constraint set (17) pertains to hub-originating demand pairs. 

 lii
li

lii tbou ,, 


 Ni   (16) 

iii zbu   Ni   (17) 

The hub departure time of the bus headed to school j is calculated by constraint set (18) when the 

leave-when-ready hub policy is in effect. In (18), the value of M (“big M”) is set as the largest 

possible value of wj, which is the sum of the maximum school ready time and the longest amount 

of time spent on any bus route from a school to the hub (  
 i

Ni
bM max1  ji

jiNjNi
t ,

,,
max


). 

  1,1 Myuw jiij   NjNi  ,  (18) 
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On the basis of constraint set (18), the leave simultaneously time is obtained in (19). 

jw  Nj  (19) 

Constraint sets (20) and either (21) or (22) calculate upper and lower bounds on each bus’s 

arrival time to its destination for demand pairs transported through the hub, depending on the hub 

policy being used. Under the leave simultaneously policy, the lower bound is computed by (21), 

while the lower bound for the leave-when-ready policy is computed using (22). In constraint sets 

(20), (21), and (19-lwr) the value of M is set to the biggest possible bus arrival time, which is the 

sum of the largest school ready time and the longest time spent on a bus route 

(  





 ji
jiNjNi

i
Ni

tbM ,
,,

2 max2max ).  

jiji
Myg

,,
  NjNi  ,  (20) 

)1( ,2,,, ji
jl

lljlji yMetg  


  NjNi  ,  (21) 

)1( ,2,,, ji
jl

lljljji yMetwg  


 NjNi  ,  (22) 

Finally, considering the two individual objective functions of interest, additional computations 

are required to properly compute our time-based metric of maximum bus lateness time in (23)-

(25). 

  jijiiji xtbk ,,,   NjNi  ,  (23) 

skga jijiji  ,,,  NjNi  ,  (24) 

jiaL ,  NjNi  ,  (25) 
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3.2 Circuit Routing Model 

Based on our literature review, we are motivated to assess the efficacy of circuit routing 

strategies for the forced transfer busing problem. Therefore, we now develop a mathematical 

program for the circuit routing case. 

3.2.1 Notation 

Sets and Parameters  

I: Set of nodes (  nI ,...,1 ) 

R: set of routes (  aR ,...,1 ) 
n total number of bus stops, a is the number of buses available. 

jih ,  Distance between node i and node j, IjIi  ,  

jiQ ,  1, if there is at least one student transferred from i to j, otherwise 0, IjIi  ,  

iC  Candidates of origin point, Ii  

 

Decision Variables 

jirx ,,   1, If node i is followed by j on route r, otherwise 0, RrjiIjIi  ),(,,  

ry  1, if route r is used, otherwise 0, Rr   

riz ,  1, if node i is the origin point on route r, otherwise 0, RrIi  ,  

rio ,  1, if node i is the destination point on route r, otherwise 0, RrIi  ,  

rid ,  1, if node i is on route r, otherwise 0, RrIi  ,  

rt  total distance/time for each route Rr  

jir
U

,,
 1 if there is at least one student need to be transferred from i to j on the route r, 

otherwise 0, RrjiIjIi  ),(,,  

rip ,  positions of node i on the route r, the big number means the former position, 

RrIi  ,  
 

3.2.2 Mixed-Integer Program 

 The objective is to minimize total bus distances: 

 Minimize 
r

rt  (26) 
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First, citing constraint set (27), origin points must be selected from candidate point. This 

constraint is used to reduce the range of origin points. 

 
i

r
ri Co  ,  Ii   (27) 

Constraint sets (28) and (29) guarantee that the total number of origins/destinations is equal to 

the number of routes. 

 
r

i
ri yo  ,  Rr   (28) 

 
r

i
ri yd  ,  Rr   (29) 

In addition, constraint sets (30) and (31) confirm that the origin and destination of each route is 

on the route. 

 riri zo ,,   RrIi  ,  (30) 

 riri zd ,,   RrIi  ,  (31) 

The total number of origins for all the used routes is equal to the total number of destinations for 

all the used routes determined in constraint set (32). 

 
 

r
r

r i
ri yo ,  (32) 

Constraint set (33) certifies that the total number of origins for all the routes is equal to the total 

number of routes used. 

 
 

r i
ri

r i
ri do ,,  (33) 

The total number of original points is at least equal to 1 as demonstrated in constraint set (34). 

 
1, 

r i
rio  (34) 

Constraint set (35) guarantees that all the nodes must be assigned on at least one route. 
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1, riz  RrIi  ,  (35) 

Constraint set (36) is used to decide the logic relations between x and the other decision 

variables. The basis is that there is sequence between i and j only when both i and j are on the 

route r.  

 
  2,,,, rjrijir zzx   RrjiIjIi  ),(,,  (36) 

At the same time, there is no sequence between i and j on route r if route r is not used as 

expressed by constraint set (37).  

 rjir yx ,,  RrjiIjIi  ),(,,  (37) 

Constraint sets (38) and (39) assure the original points must be followed by other nodes and the 

destination point must have nodes in front of it. 

 
ri

j
jir ox ,,,   RrIi  ,  (38) 

 
 

i
rjjir dx ,,,  RrIj  ,  (39) 

Constraint sets (40) and (41) make sure that only one node can be connected with the other node 

on one route. 

 
 

j
jirx 1,,  RrIi  ,  (40) 

 
 

i
jirx 1,,  RrIj  ,  (41) 

Further, one and only one node can be connected to the other (former or latter) on the condition 

that the node is on the route: 

 
rjrj

i
jir zox ,,,,   RrIj  ,  (42) 

 
riri

j
jir zdx ,,,,   RrIi  ,  (43) 
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Constraint set (44) requires that each connection is directed and has only one direction: 

 
1,,,,  ijrjir xx  RrjiIjIi  ),(,,  (44) 

Further, an arc can’t be used by more than one route. 

 
1,, 

r
jirx  )(,, jiIjIi   (45) 

Constraint set (46) is used to calculate the total time/distance spent on each route: 

 


i i
jijirr hxt ,,, *  Rr   (46) 

In addition to the other constraint described above for the circuit routing method, we need 

additional constraint sets to model the continuity of student travel. The position of nodes on each 

route is resolved by constraint set (47): 

 
  Mxpp jirrjri *11 ,,,,   RrjiIjIi  ),(,,  (47) 

In addition, the position number of destination node is set to 1 in constraint set (48). 

 riri dp ,,   RrIi  ,  (48) 

The 
jir

U
,,

values are decided by position number with the following constraint set: 

 
   

2
,,,,

,,
rjrirjri

jir

zz
M

UU
U





  RrjiIjIi  ),(,,  (49) 

Furthermore, if at least one student needs to be transferred from i to j on route r, then node i and 

node j must both assigned on the route r: 

 
  2,,,, rjrijir zzU   RrjiIjIi  ),(,,  (50) 

The final constraint sets makes sure to meet all the student transfer requirements. 

 
ji

r
jir QU ,,,   )(,, jiIjIi   (51) 
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4 Forced Transfer Busing Case Studies 

Forced transfer problems occur primarily at the elementary level, so this research uses 

data from the elementary schools in both the Fort Smith and Springdale school districts. The 

demand data provided by both school districts with the corresponding distance and time data was 

first implemented in the hybrid hub-and-spoke model developed by Jia (2008) to determine the 

best hub location, the total bus miles, the maximum time a student will arrive late to school, the 

average lateness, the number of buses used and the number of direct pair transfers. The data was 

analyzed with three different methodologies. In the first method, each bus was allowed to leave 

when ready, or when all students had boarded that particular bus and the objective was to 

minimize total bus miles (“Dist” objective). The data was then analyzed with the buses still 

allowed to leave when ready, but with the objective to minimize maximum lateness (“Late-

LWR” objective). Finally, the data was run with the buses required to leave at the same time and 

with the objective set to minimize the maximum late time a student arrives (“Late-DS” 

objective). The bus start time was simulated throughout the experimentation. The demand and 

distance data was then used in the circuit routing model above to determine the best circuit route 

combinations, the number of buses needed, and total miles. The results from testing these models 

with data from both Fort Smith and Springdale are detailed in the following sections. 

 

4.1 Fort Smith Public Schools 

The Fort Smith School District currently has nineteen elementary schools, located as 

shown in Figure 2. The current bus routes are shown in Figure 3.  Four buses run different circuit 

routes to meet all elementary-level demand. The demand data to be analyzed is shown below in 

Table 2. 
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Figure 2 Fort Smith Elementary Schools (50.3 mi2) 

     

   

Figure 3: Current Ft. Smith Routes 
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Table 2: Fort Smith Elementary Demand Data 

 

 

Table 2 shows demand from the schools in the left column to the schools along the top row.  For 

example, the demand from Fairview to Beard is three (i.e., 3 students must be transferred from 

Fairview to Beard). 

 

4.1.1 FSPS Hybrid Hub-and-Spoke Model 

We have used the hybrid hub-and-spoke model to analyze an alternative busing strategy 

for Fort Smith.  We hope to offer district decision makers choices in their approach to forced 

transfer busing, and hopefully suggest alternatives that will save transportation costs and student 

ride and wait time.  No data was provided from Fort Smith describing exactly when a transfer 

bus is ready to leave a particular school (after all regular bus routes have arrived). We created 

five different data sets to be analyzed in the model based on our estimates for these times. 

All data sets are based on a school start time of 8:00 a.m. The first data set assumes all 

buses can leave as early as 7:30 and the second assumes all buses are ready to leave at 8:00. 

These give us a frame of reference: one assumes an unusually early leave time and the other, a 

very late leave time. In the remaining three data sets, times within 5 minutes of 7:45 are 

randomly assigned to each school.  Also note that we did not receive any data telling us which 
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schools could feasibly be the hub.  Thus we assumed all schools were eligible.  Tables 3 through 

7 show the model results using each of the five described data sets. We obtain the suggested hub, 

total bus miles and the maximum lateness of any bus used to transport students.  We changed the 

number of available buses we allowed the model until we obtained feasible results.  As we 

changed the number of buses from this feasible number (17), results either became infeasible or 

did not change.  Therefore, only the model results using 17 buses are shown below. 

 

Table 3.  Buses leave at 7:30 

Objective # Buses Hub Total miles # direct # hub Max Lateness 
Dist 17 Ballman 106.16 2 15 0 

Late-LWR 17 Ballman 106.16 2 15 0 
Late-DS 17 Ballman 106.16 2 15 0 

 

Table 4.  Buses leave at 8:00 

Objective # Buses Hub Total miles # direct # hub Max Lateness 
Dist 17 Ballman 106.16 2 15 30 

Late-LWR 17 Euper Lane 135.47 2 15 26 
Late-DS 17 Euper Lane 135.47 2 15 26 

 

Table 5.  Buses leave around 7:45a 

Objective # Buses Hub Total miles # direct # hub Max Lateness 
Dist 17 Ballman 106.16 2 15 15 

Late-LWR 17 Orr 150.04 2 15 11 
Late-DS 17 Euper Lane 135.47 2 15 12 

 

Table 6.  Buses leave around 7:45b 

Objective # Buses Hub Total miles # direct # hub Max Lateness 
Dist 17 Pike 120.58 2 15 13 

Late-LWR 17 Sutton 151.29 2 15 12 
Late-DS 17 Sutton 152.26 2 15 12 
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Table 7.  Buses leave around 7:45c 

Objective # Buses Hub Total miles # direct # hub Max Lateness 
Dist 17 Ballman 106.16 2 15 14 

Late-LWR 17 Euper Lane 135.47 2 15 10 
Late-DS 17 Euper Lane 135.47 2 15 11 

 

Taking a closer look at Table 3, we see that for all three objectives, the suggested hub is 

Ballman, there are 2 buses used for direct transportation and 15 for demand through the hub, the 

maximum student lateness is 0 (all arrive on time), and the total mileage is 106.16 miles. Similar 

observations can be made by examining each of the remaining tables.  Note that in other 

scenarios the data varies with the different objectives.  For example, for the 8:00 ready-time case, 

if the objective is to minimize distance, Ballman is the suggested hub.  However, if the objective 

is to minimize student lateness, Euper Lane is the suggested hub.  Notice that for the 7:30 ready-

time case, no bus arrives late.  This is because this case assumes all regular bus routes arrive to 

the home schools at least 30 minutes before the school day begins.  When the ready-time is 

increased to 8:00, maximum lateness increases as much as 30 minutes because by the time these 

buses are ready to leave, the students are already late.  The suggested Fort Smith hubs are shown 

below in Figure 4.   
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Figure 4: Fort Smith Suggested Hubs 

 

The next step in this research is to meet with Fort Smith officials to compare model 

results with actual results. When the model performs like the current system, it is validated. If it 

does not, the model will be adjusted so that better results can be obtained.  We also plan to learn 

which schools are feasible to be the hub.  There are a variety of reasons a school may not be 

allowed to be the hub.  For example, there may be limited parking space, not enough room for a 

bus to turn around, etc.  After talking to FSPS officials, we will limit the schools allowed to be 

the hub in our model and reanalyze the data.  We can then compare our new results with the 

initial results to see how much the hub limitation affects our objectives. 

Part of this analysis will include changing the number of buses we provide to the model 

to see if any new solutions result.  We will also compare the number of buses needed to make the 

model feasible to the current number used by Fort Smith. We will also compare the model results 

with current practices to look for ways to improve Fort Smith’s busing strategy in terms of cost 
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and student ride time.  We hope to offer them alternate solutions so that decision makers can be 

well-informed and allocate their resources wisely. 

 

4.1.2 FSPS Circuit Model 

Fort Smith currently uses a circuit strategy for forced transfer busing.  The four current 

elementary-level routes are shown above in Figure 3.  In a circuit strategy, a bus visits a series of 

schools and students can be picked up or dropped off at any school visited along the route.  We 

developed a circuit routing model to analyze Fort Smith’s data.  Our model is capable of 

analyzing problems instances over a variety of number of bus cases.  We analyze this problem 

for the smallest feasible number of buses case, two, and are able to produce the optimal solution 

as given in Tables 8 and 9. 

 

Table 8. FSPS Two Bus Optimal Circuit Solution—First Bus 

Position School 
Miles 

Traveled 
Travel 

Time (min) 
# Students 

On 
# Students 

Off 
Current # of 

Students 
1 Barling 0 0 11 0 11 
2 Woods 2.63 4 5 4 12 
3 Euper 4.53 8 2 2 12 
4 Bonneville 5.97 12 5 0 17 
5 Pike 7.86 16 19 0 36 
6 Sunnymede 8.95 18 14 0 50 
7 Sutton 10.21 20 14 7 57 
8 Spradling 11.01 21 9 12 54 
9 Morrison 12.76 25 10 0 64 
10 Trusty 14.1 29 10 11 63 
11 Howard 15.98 34 9 6 66 
12 Tilles 16.85 37 10 23 53 
13 Ballman 18.8 44 0 6 47 
14 Fairview 20.18 48 9 0 56 
15 Orr 22.56 53 0 31 25 
16 Carnall 23.78 56 0 7 18 
17 Cavanaugh 26.56 63 5 0 23 
18 Beard 27.13 64 5 16 12 
19 Cook 29.18 70 0 12 0 
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Table 9. FSPS Two Bus Optimal Circuit Solution—Second Bus 

Position School 
Miles 

Traveled 
Travel 

Time (min) 
# Students 

On 
# Students 

Off 
Current # of 

Students 
1 Beard 0 0 2 0 2 
2 Cavanaugh 0.57 1 2 0 4 
3 Carnall 3.35 8 1 2 3 
4 Orr 4.57 11 2 2 3 
5 Fairview 6.95 16 9 1 11 
6 Ballman 8.33 20 1 7 5 
7 Tilles 10.28 27 6 0 11 
8 Howard 11.15 30 0 4 7 
9 Trusty 13.03 35 7 1 13 
10 Morrison 14.37 39 2 0 15 
11 Spradling 16.12 43 2 5 12 
12 Sutton 16.92 44 2 3 11 
13 Sunnymede 18.18 46 3 4 10 
14 Pike 19.27 48 0 5 5 
15 Bonneville 21.16 52 5 4 6 
16 Euper 22.6 56 4 1 9 
17 Woods 24.5 60 0 9 0 

 

 Examining the results in Table 8 reveals that an exceedingly large number of students are 

required to be on the circuit bus at the same time (a maximum of 66).  In addition, the 70 minutes 

of required travel time are excessive in that students may be forced to arrive at their destination 

school late or early stop bus riders will be asked to arrive at their embarkation point very early in 

the morning.  Conversations with FSPS personnel confirmed these shortcomings of the two bus 

optimal circuit routing solutions.  With this in mind, we analyzed the FSPS problem using three 

circuit buses.  The optimal results from this analysis are given in Tables 10, 11, and 12 for each 

of the resulting circuit bus routes. 
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Table 10. FSPS Three Bus Optimal Circuit Solution—First Bus 

Position School 
Miles 

Traveled 
Travel 

Time (min) 
# Students 

On 
# Students 

Off 
Current # of 

Students 
1 Tilles 0 0 6 0 6 
2 Howard 0.87 3 0 4 2 
3 Trusty 2.75 8 7 2 8 
4 Morrison 4.09 12 2 0 10 
5 Spradling 5.84 16 2 5 7 
6 Sutton 6.64 17 2 3 6 
7 Sunnymede 7.9 19 3 4 5 
8 Pike 8.99 21 0 5 0 

 

 
Table 11. FSPS Three Bus Optimal Circuit Solution—Second Bus 

Position School 
Miles 

Traveled 
Travel 

Time (min) 
# Students 

On 
# Students 

Off 
Current # of 

Students 
1 Barling 0 0 11 0 11 
2 Woods 2.63 4 5 4 12 
3 Euper 4.53 8 2 2 12 
4 Bonneville 5.97 12 5 0 17 
5 Pike 7.86 16 19 0 36 
6 Sunnymede 8.95 18 14 0 50 
7 Sutton 10.21 20 14 7 57 
8 Spradling 11.01 21 9 12 54 
9 Morrison 12.76 25 10 0 64 
10 Trusty 14.1 29 10 11 63 
11 Howard 15.98 34 9 6 66 
12 Tilles 16.85 37 10 23 53 
13 Ballman 18.8 44 0 6 47 
14 Fairview 20.18 48 9 0 56 
15 Orr 22.56 53 0 31 25 
16 Carnall 23.78 56 0 7 18 
17 Cavanaugh 26.56 63 5 0 23 
18 Beard 27.13 64 5 16 12 
19 Cook 29.18 70 0 12 0 
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Table 12. FSPS Three Bus Optimal Circuit Solution—Third Bus 

Position School 
Miles 

Traveled 
Travel 

Time (min) 
# Students 

On 
# Students 

Off 
Current # of 

Students 
1 Beard 0 0 2 0 2 
2 Cavanaugh 0.57 1 2 0 4 
3 Carnall 3.35 8 1 2 3 
4 Orr 4.57 11 2 2 3 
5 Fairview 6.95 16 9 1 11 
6 Ballman 8.33 20 1 7 5 
7 Bonneville 10.87 27 5 4 6 
8 Euper 12.31 31 4 1 9 
9 Woods 14.21 35 0 9 0 

 

Observing the results in Table 11, we still see a large number of students present on the 

bus in the middle of its route.  This optimal result combines with the Table 10 and Table 12 bus 

recommendations, which are far less crowded and much shorter routes.  In fact, when we run the 

optimization model to add a fourth possible bus, we obtain the same solution as this three bus 

case.  Pike, Sunnymede, and Sutton schools have significant numbers of student that board at 

each school, leading to this large number of students on the bus.  In the future, we need to add 

additional model constraints to attempt to minimize and/or balance the number of students on 

each circuit transfer bus route, as well as to maintain some maximum acceptable length of bus 

riding time for the students. 

 

4.2 Springdale Public Schools 

The Springdale Public School District currently has sixteen elementary schools, which 

are divided into eight east and eight west schools by Highway 71 Business. The location of these 

schools is depicted below in Figure 5. 
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Figure 5. Springdale Elementary Schools 

 

Springdale’s current policy does not allow any forced transfers to occur across Highway 

71 Business; therefore, they presently use two hub-and-spoke networks: one for the eight east 

schools and one for the eight west schools. Consequently, we performed our analysis with both 

models by separating the data into east and west regions. The east hub is currently Harp 

Elementary and the west hub is Smith Elementary. These schools were chosen by Springdale 

because they are centrally located, allow for ease of traffic and have adequate space for bus 

parking. In each instance bus mileage increased as a result of limiting the hubs, but there was not 

a hugely significant increase in lateness. As illustrated in Figure 6, the current Springdale east 

side policy assigns Harp Elementary as the hub with seven buses traveling to the other seven 

schools with no direct pairs. The current west route is displayed in Figure 7 (where the black 

arrows represent the first set of buses traveling to the hub and the blue arrows represent the buses 

leaving the hub). 



 

  31 

 

Figure 6: Springdale East Side Current Route 

 

 

Figure 7: Springdale West Side Current Route  

 



 

  32 

For each set of eight schools (east and west), data on the distance and time between each 

school was collected as well as the transfer demand between each school and the number of 

students transferred. The demand data is displayed below in Table 13 and Table 14. 

 

Table 13.  Springdale East Schools Transfer Demand 

From/To Bayyari George Harp Jones Lee Monitor Parson Hills Turnbow 
Bayyari 0 0 3 5 8 4 1 4 
George 0 0 0 1 2 7 7 1 
Harp 0 2 0 0 13 3 3 0 
Jones 0 1 1 0 3 0 4 0 
Lee 1 0 0 0 0 2 0 1 

Monitor 3 0 0 0 0 0 15 2 
Parson Hills 0 0 5 3 0 0 0 0 

Turnbow 8 0 1 12 0 3 3 0 
 

Table 14.  Springdale West Schools Transfer Demand 

From/To Elmdale Hunt Shaw Smith Tyson Walker Westwood Young 
Elmdale 0 0 0 0 0 0 1 0 

Hunt 0 0 0 0 0 0 0 0 
Shaw 0 5 0 1 0 4 0 0 
Smith 3 0 0 0 0 0 0 6 
Tyson 2 0 0 4 0 3 0 2 
Walker 0 0 0 0 0 0 0 0 

Westwood 0 0 0 0 0 0 0 4 
Young 0 0 0 0 0 0 0 0 

 
 
4.2.1 SPS Hybrid Hub-and-Spoke Model 

This research first used the Springdale data in the hybrid hub-and-spoke model to test 

Springdale’s current policy and attempt to find an improved solution. Springdale provided a list 

of schools that were deemed infeasible hub locations due to location or bus parking capacity. 

With each of the three methods of testing the data, the data was run with all hubs possible and 

with the hub limited for Springdale. The east results for minimizing total bus miles (“Dist” 
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objective) are given in Table 15. For the minimizing maximum bus lateness objective, Table 16 

(Table 17) displays the results for the east schools under the Late-LWR (Late-DS) objective. 

 

Table 15.  East Schools: Leave When Ready, Objective: Minimize Miles 

All Hubs Possible 

# Buses Max Late Avg Late Miles Hub # Direct 
7 11 -2.3 34.8 Jones 0 

      

Hubs limited to Bayyari, Harp, and Turnbow 

# Buses Max Late Avg Late Miles Hub # Direct 
7 13 -1.3 41.9 Harp 0 

 

Table 16.  East Schools: Leave When Ready, Objective: Minimize Maximum Late 

All Hubs Possible 

# Buses Max Late Avg Late Miles Hub # Direct 
10 5 -2.6 43.4 Jones 3 
7 11 0.6 34.8 Jones 0 

      

Hubs limited to Bayyari, Harp, and Turnbow 

# Buses Max Late Avg Late Miles Hub # Direct 
11 5 -2.5 53.6 Harp 4 
8 7 -1.3 45.1 Harp 1 
7 13 1.5 41.9 Harp 0 
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Table 17.  East Schools: Leave Simultaneously, Objective: Minimize Maximum Late 

All Hubs Possible 

# Buses Max Late Avg Late Miles Hub # Direct 
10 5 -3.6 43.4 Jones 3 
7 12 0.8 38.2 Parson Hills 0 

      

Hubs limited to Bayyari, Harp, and Turnbow 

# Buses Max Late Avg Late Miles Hub # Direct 
16 5 -3.5 72.7 Harp 10 
10 7 -1.4 50.4 Harp 3 
7 13 0.3 41.9 Harp 0 

 

 

When the hubs were limited in the model, Springdale’s current method was found to be 

the best route (fewest buses) in each instance. This validates the model’s effectiveness in real 

situations. When all hubs were allowed, however, the model found a route that used the same 

number of buses but with 7.1 fewer miles and a decreased maximum lateness of two minutes 

when Jones is set as the hub (Figure 8). Nonetheless, Springdale considers Jones an infeasible 

hub location because it either does not have the necessary parking capacity or is located in an 

area that numerous buses would have difficultly accessing at the same time. 
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Figure 8: Springdale East Side with Jones as the Hub 

 

The same three methods of testing the data were used for the west data, with the 

corresponding results being given in Tables 18 through 20. 

 

Table 18. West Schools: Leave When Ready, Objective: Minimize Miles 
All Hubs Possible 

 
# Buses Max Late Avg Late Miles Hub # Direct 

5 10 -8 21.5 Smith 1 
      

Hubs limited to Hunt, Smith, Walker, and Young 

# Buses Max Late Avg Late Miles Hub # Direct 
5 10 -8 21.5 Smith 1 
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Table 19.  West Schools: Leave When Ready, Objective: Minimize Maximum Late 
All Hubs Possible 

 
# Buses Max Late Avg Late Miles Hub # Direct 

11 0 -9.4 41.2 Shaw 8 
6 6 -8.6 27.7 Smith 3 
5 10 -7.9 21.5 Smith 1 

      

Hubs limited to Hunt, Smith, Walker, and Young 

# Buses Max Late Avg Late Miles Hub # Direct 
11 5 -9.6 41.2 Hunt 10 
6 6 -8.6 27.7 Smith 3 
5 10 -7.9 21.5 Smith 1 

 

Table 20.  West Schools: Leave Simultaneously, Objective: Minimize Maximum Late 
All Hubs Possible 

 
# Buses Max Late Avg Late Miles Hub # Direct 

11 5 -9.7 41.2 Hunt 10 
7 6 -8.7 33.3 Smith 5 
5 11 -7.6 21.5 Smith 1 

      

Hubs limited to Hunt, Smith, Walker, and Young 

# Buses Max Late Avg Late Miles Hub # Direct 
11 5 -9.7 41.2 Hunt 10 
7 6 -8.7 33.3 Smith 5 
5 11 -7.6 21.5 Smith 1 

 

The results when the hubs were limited and not limited in the west were almost identical. 

The only difference occurred in Table 19 where Shaw was eliminated as a possible hub. 

However, maximum lateness was the only factor that increased (five minutes). Smith Elementary 

is currently the Springdale west hub and was found most frequently to be the best hub by the 

model, thereby validating the model once again. However, the model requires five buses and one 

direct transfer (Figure 9) while Springdale currently only uses four buses on the west side and no 
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direct pairs. This is possible because the transfer demand on the west side is considerably lower 

than on the east (132 students in the east versus only 35 in the west) and is achieved by using a 

multi-stop approach in which one bus will stop at two schools before going to the hub.  A 

preliminary multi-stop model was developed to examine this phenomenon and indeed, we 

confirmed the optimality of this approach as well. 

 

 

Figure 9: Springdale West Side with Smith as the Hub and one Direct Pair 

 

4.2.2 SPS Circuit Model 

When evaluating the Springdale data with the circuit model, the sixteen elementary 

schools were once again divided into eight east and eight west schools and analyzed separately. 

For each side, the model was first run with the number of buses limited to eight then to seven and 

so on to ultimately two buses. In both instances only two routes (using only two buses) were 
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found, no matter what the route capacity was set to. On the east side, route two was simply the 

reverse of route one. Table 21 shows the two routes for the east side, miles traveled, travel time, 

and the bus capacity feasibility. 

 

Table 21. East Circuit Routes and Bus Capacity Feasibility 

Route 1       

Position School 
Miles 

Traveled
Travel 

Time (min) 

# 
Students 

On 

# 
Students 

Off 
Current # 

of Students 
8 Turnbow 0 0 27 0 27 
3 Harp 2.2 5 21 1 47 

7 
Parson 
Hills 3.6 9 3 6 44 

2 George 5.6 14 10 2 52 
4 Jones 6.7 17 3 16 39 
5 Lee 7.4 19 3 18 24 
1 Bayyari 10.6 27 4 9 19 
6 Monitor 13.8 35 0 19 0 
       

Route 2       

Position School 
Miles 

Traveled
Travel 

Time (min) 

# 
Students 

On 

# 
Students 

Off 
Current # 

of Students 
6 Monitor 0 0 20 0 20 
1 Bayyari 3.2 8 21 3 38 
5 Lee 6.4 17 1 8 31 
4 Jones 7.1 19 6 5 32 
2 George 8.2 22 8 1 39 

7 
Parson 
Hills 10.2 27 5 27 17 

3 Harp 11.6 31 0 9 8 
8 Turnbow 13.8 35 0 8 0 

 

The maximum number of students at any point in time is 52 on bus 1 and 39 on bus two. 

The two buses travel a total of 27.6 miles with a maximum time of 35 minutes. Figure 10 below 



 

  39 

shows the Springdale east side circuit routes where the black arrows represent route one and the 

blue arrows represent route two. 

 

 

Figure 10: Springdale East Circuit Routes 

 

On the west side only two routes were found again; however, route two only included 

three schools while route one visited every school. Table 22 shows the routes, miles, time 

traveled, and bus capacity for the west side. 
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Table 22. West Circuit Routes and Bus Capacity Feasibility 

Route 1       

Position School 
Miles 

Traveled
Travel 

Time (min) 

# 
Students 

On 

# 
Students 

Off 
Current # 

of Students 
3 Shaw 0 0 10 0 10 
4 Smith 5.4 15 9 1 18 
2 Hunt 6.7 18 0 5 13 
1 Elmdale 8.8 24 1 3 11 
7 Westwood 9.5 26 4 1 14 
5 Tyson 11.1 31 5 0 19 
6 Walker 12.6 35 0 7 12 
8 Young 15.5 44 0 12 0 
       
 

Route 2       

Position School 
Miles 

Traveled
Travel 

Time (min) 

# 
Students 

On 

# 
Students 

Off 
Current # 

of Students 
5 Tyson 0 0 6 0 6 
1 Elmdale 2 7 0 2 4 
4 Smith 4.1 13 0 4 0 

 

The maximum number of students at any point in time is 19 on bus 1 and 6 on bus two. The two 

buses travel a total of 19.6 miles with a maximum time of 44 minutes. Figure 11 depicts the two 

west routes. Again, the black arrows are route one and the blue arrows are route two.  
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Figure 11: Springdale West Circuit Routes 

 

The circuit routes for both the east and west sides produced lower total bus mile results 

than the hybrid hub-and-spoke model. These results were then presented to the Springdale 

Transportation Department; however, Springdale rejected the proposition. In a hub-and-spoke 

system, students ride a bus from their home to the school in their zone, catch a hub-and-spoke 

bus to the hub and then take another bus to their destination school. In a circuit model, parents 

must provide transportation to the school in their zone because the circuit buses must leave 

before the normal buses arrive due to the time required to complete the circuit. Since the 

majority of transfers in Springdale are mandated by the school district, the district must provide 

transportation for equality reasons; therefore, requiring that parents provide transportation to the 

base school would be met with considerable opposition. Springdale prefers to use their current 
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Hub-and-Spoke routing method; however, further research could further improve upon their 

current solution. 

 

5 Special Needs Student Transportation 

5.1 Problem Description 

"Special needs" students are those children who, for various reasons, cannot 

attend/participate in "normal" classes for their grade level at their neighborhood school.  Each 

special needs child has some type of disability, such as autism, speech impairment, learning 

disability, and/or brain injury, which prevents them from being able to learn effectively in a 

normal classroom environment.  According to his or her specific needs, each special needs child 

is assigned to a designated special needs class within the school district.  Special needs classes 

typically are designated according to the student to teacher ratio (e.g., 6:1, 10:1, etc.).  The 

needed special needs class may or may not be located at the special needs student's neighborhood 

school. 

School districts typically provide door-to-door transportation for all special needs 

children.  Each special needs student is picked up at home and taken to the assigned school, 

regardless of how far the child’s home is from the school.  In our research, we assess the impact 

of reassigning special needs classrooms to schools based on each school's proximity to the 

students requiring the class's specific services and functions.  Our goal is to optimize the travel 

experience of special needs students by minimizing the amount of bus travel required, and 

therefore, student bus riding times and hopefully, gasoline consumption and transportation costs. 

Special needs busing is approached differently than forced transfer busing.  Each student 

is picked up at his or her home and driven to the school providing that student’s required class or 
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service.  Usually, one bus picks up all students traveling to a certain school, drops them off, and 

then possibly runs another route.  We have met with Springdale to learn about their current 

special needs practices and look at their special needs busing data.  In the future we plan to 

explore how forced transfer busing strategies can be applied to special needs busing. 

 

5.2 Mathematical Model 

As mentioned earlier, problem in special needs busing section is different than finding a 

circuit route or a hub. Since students are picked up from where they live and then dropped off at 

their school, objective becomes minimizing total distance they ride on the bus. Following 

assumptions are made in the model: 

 Each bus has a single pick-up and drop-off location. 
 Each bus has a specific capacity for students. 
 At the origin point and at the destination, load on the buses should be zero. 

 
Special needs model also has been solved with two other objective functions. Those 

objective functions which are described later in this section, deal with either dropping elementary 

students earlier or picking them up earlier. 

 

5.2.1 Notation 

Sets and Parameters 

K Set of vehicles indexed by k 
P = {1, . . . , p} Set of pickup locations 
D = {p + 1, . . . , 1} Set of delivery locations 
Ok Origin depot of vehicle ݇ א  ܭ
Mk Destination depot of vehicle ݇ א  ܭ
N = ሼܲ ׫  ሽܦ
Vk = ሼܰ ׫ ܱ௞ ,௞ሽܯ׫ ݇ א  Set of vertices :ܭ
Ak = ሼሺ݅, ݆ሻ: ݅ א ܸ, ݆ א ܸሽ: Set of arcs 
ܿ௜௝
௞  Cost of using arc ሺ݅, ݆ሻ א ݇ ௞ by vehicleܣ א  ܭ
݈௜ load pickup or delivered at location ݅ ݅׊ א ܰ 
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Qk Capacity of vehicle k 
݀௜௝
௞  Distance travelled by vehicle ݇ א ,on arc ሺ݅ ܭ ݆ሻ א  ௞ܣ
 ௜௝ =1, if there exists load transported between location i and j, otherwise 0ݑ

  kAji  ,  
 
Decision Variables 

௜௝ݔ
௞  =1, if vehicle k use arc ሺ݅, ݆ሻ א ݅ ,௞ܣ ് j, otherwise 0 

௝ݕ
௞ Load on vehicle ݇ א ݆ after picking up the load at location ܭ א ܲ 

௜ݖ
௞ Distance accumulated by vehicle ݇ א ݅ after visiting node ܭ א ௞ܸ 

 

5.2.2 Mixed-Integer Program 

We now present three model variations, with increasing degree of reality added into 

them. We term the first model as OPT1. The objective of the OPT1 model as given in equation 

(52) is to minimize the total distance traveled by all the buses. 

Min k
ij

jiNji Kk

k
ij dx 

 ,,

 (52) 

Constraint set (53) guarantees one and only one vehicle leaves each pickup location.
 

1
,


 ijMPj

k
ij

k

x  ,ki O k K     (53) 

Constraint set (54) ensures that each pick-up location or delivery node is visited exactly once.  

1
,

 
 ijMNj Kk

k
ij

k

x  i N   (54) 

Constraint set (55) guarantees one and only one vehicle arrives to each delivery location.
 

1
,


 ijDj

k
ij

k

x  ,  kj M k K     (55) 

Constraint set (56) ensures that if a vehicle visits a particular node (pick-up or delivery), then it 

leaves that node.  

0
,,

 
 ijMNi

k
ji

ijONi

k
ij

kk

xx  ,  j N k K     (56) 
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Constraint sets (57) and (58) update the load on a vehicle and the distance accumulated by a 

vehicle after visiting a particular node. 

 1k k k
i j ij jy l M x y       jiKkAji k  ,,,  (57) 

 1k k k k
i ij ij jz d M x z       jiKkAji k  ,,,  (58) 

Constraints on vehicle capacity are enforced by (59) and (60). 

k k
i il y Q   ,  i P k K     (59) 

i
kk

i lQy 0  KkDi  ,  (60) 

Constraint set (61) requires the vehicles to be empty at their initial and final locations. 

0k
iy   kk MOi    (61) 

Constraint set (62) states that the vehicle has not traveled any distance when it is at its initial 

depot.  

0k
iz   ki O   (62) 

Constraint set (63) ensures that node i is traveled before node j if there is demand from node i to 

node j.  

  k
jij

k
i zuz  1.0    KkAji k  ,,  (63) 

Constraint set (64) and (65) forces there is only one node to be visited after origin node or before 

destination node. Constraint set (64) and (65) forces that all vehicles have one and only one 

origin and one and only one destination. 

1
,


 jiNj

k
ijx

 
,ki O k K     (64) 

1
,


 jiNi

k
ijx

 
KkMj k  ,  (65) 

Constraint set (66) is a logic constraint that defines the relation between two kinds of variables.  
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k
ij

jiNji Kk

k
ij

Mh Kk

k
h dxz

k

  
  


,,   

(66) 

Constraint sets (67) and (68) are variable type constraints. 

 0,1k
ijx    , ,   i j A k K     (67) 

0k
iz   ,  i V k K     (68) 

 

OPT2 is the optimal value for the total distance when elementary school students are 

delivered before high school students. One parameter and one constraint are added in order to 

meet this new requirement. The new parameter denotes elementary schools are sequenced before 

high schools. 

௜݂௝ = 1, if node i should be visited before node j, otherwise 0, Dji  ,   

  k
jij

k
i zfz  1.0  KkDji  ,,  (69) 

Constraint set (69) requires that elementary school students be delivered before high school 

students. 

OPT3 is the optimal value of total distance when older students must be picked up after 

elementary school students are delivered.  At this time, the bus stops for older students must be 

sequenced after the elementary school students.  Although the same parameter and constraint for 

OPT2 has been added, the scale of fij has been extended as follows: 

௜݂௝ = 1, if node i should be visited before node j, otherwise 0, Nji  ,  

  k
jij

k
i zfz  1.0  KkNji  ,,  (70) 

Constraint set (70) requires that elementary school students be picked up before high school 

students. 
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5.3 Springdale Public Schools Special Needs Case Study 

Table 23. Springdale Public Schools Case Study Results 
 

Bus NO OPT 1 OPT2 OPT3 
100 21.736 25.114 25.469 
101 26.362 28.141 45.125 
102 19.773 19.773 19.773 
66 23.951 23.951 25.292 
67 17.409 20.618 20.618 
68 24.436 24.649 
79 23.523 24.684 30.519 
80 25.305 27.775 32.776 
95 5.638 5.638 5.638 
96 27.238 27.238 
97 20.859 20.864 30.653 

MD 8.411 8.411 8.411 
117 12.106 12.106 12.106 
118 20.408 20.408 24.922 
V1 8.976 8.976 8.976 
65 3.547 3.547 3.547 

 

OPT1 is the optimal value of total distances. OPT2 is the optimal value in which elementary 

school students are delivered before high school students. OPT3 is the optimal value in which 

older students are pickup after elementary school students are delivered. The reasons for the 

same optimal values among OPT1, OPT2 and OPT3 are: 

1) There is only one school level in the bus route. 

2) The optimal value also meets the requirement of OPT2 or OPT3. 

3)  There is no optimal value for OPT3 because one bus stop goes to both the elementary 

school and the middle school and one bus stop can only be traversed once. 

4) OPT3 can’t be solved for buses 68 and 96. 
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6 Conclusions and Future Work 

Forced transfer busing occurs in school districts across the country, but is a problem that 

is often inefficiently solved by hand. This research will continue to work with real data to 

hopefully find more efficient routing solutions. In the future real Fort Smith data will be 

collected and will be used in a hybrid model to compare with their current circuit method. 

Springdale’s current method has been validated, but can be tested further using a multi-stop 

approach. However, the majority of research conducted with Springdale’s data will focus on 

analyzing and improving Springdale’s special needs busing. 

The special needs student busing problem has different characteristics than the forced 

transfer busing problem. This problem also can be solved using a different objective function, 

but the main focus is still minimizing total time students spend on the bus. The results from the 

Springdale case study showed that analyzing problems with different objectives (focuses) will 

result in almost the same answers. Special needs busing is a wide open subject and needs further 

research and data analysis in order to make in impact in the school districts.  
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