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Executive Summary

Large-scale regional evacuation is a
important component of homeland
security emergency response
planning; however, evacuations
involving large commercial shoppinc
areas have not been a major focus
area for research initiatives. This
report explores the state of art for

modeling large-scale evacuations
within geographic areas that contain
commercial shopping districts. The focus of theorefs on microscopic simulation methods. A
systematic methodology for simulating evacuationiced by emergencies is examined within the
context of a case study involving the evacuatiopasking lots within a commercial shopping distriit
base model for background traffic was constructethelidated in order to represent real traffic
conditions. Six evacuation scenarios were develgpedexplored within simulation experiments by
varying factors involving the occupancy rate ofliag lots and background traffic levels. The
performance of vehicles attempting to evacuateitbas is captured in terms of an evacuation rigkler
involving the most problematic parking lots andear@/here traffic bottlenecks are projected to accur
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1. INTRODUCTION

The planning of large-scale evacuation has becamanportant area of emphasis for
emergency planners. Large-scale evacuation invotiies movement of people and
resources both to escape the disaster and to mespahne disaster. Such disasters include
natural and man-made events (e.g. earthquakesansuwildfire, radioactive release,
and terrorist attacks). In areas prone to emergeveynts, such as wildfire interfaces,
canyon communities, large shopping malls or islanffshore, the preplanning for
evacuation is necessary and crucial. For instanoee than twenty people were killed in
the Oakland Hill wildfire of 1991, where most ofeth lost their lives within no more
than half an hour after the fire. (Church and Sexf902) An unprecedented devastating
tsunami hit Indonesia in 2004, causing more tharDU® deaths and thousands of
homeless people, due to lack of tsunami warningesys and well-prepared evacuation
plans. (Asian Development Bank, 2006) Piqued bysehemergency scenarios,
researchers have begun to develop optimal evacudi@tegies, where numerous
relevant problems emerge with a central issue coimag how best to simulate the
processes and assess the risk of emergency plans.

The analysis of evacuation situations started stigéic methodologies such as the
bulk lane demand (Cova and Church, 1997). Thigtenadone as a preliminary analysis
and because of the lack of computational resourthese methods have limitations
attributed to the fact that the evacuation progestynamic with chaos and instability,
rather than static. Evacuation modeling requiresdétails of the movement of vehicles
and people, as well as the topography within thergency planning zones, in order to
realistically represent the situation. In the pastnty years, advancements in computer

technology have given rise to high fidelity simidat which make it possible to model



the details and complexity of evacuation scenaiitisro simulation, with the ability to
track individual movements of resources as welthesr collective behavior, has been
successfully applied to various evacuation situngtio

Modeling methodologies used in evacuation haveivedemuch attention in the
literature. The modeling of mid to large range exsions (e.g. neighborhoods, parking
areas, large building structures, commercial distyietc.) remains an open area of
research due to the fact that more detail as tovéfiecle and pedestrian movement is
required. Normally, most studies are based on shienates of the evacuation of vehicles
firstly according to the population, vehicle occopg and vehicle usage within the
emergency planning area. Often assumptions are rtredeall the vehicles will be
released directly into the traffic flows, withoubresidering the detailed movements
within parking structures (e.g. vehicles backing ofiparking spots or driveways, and
the interaction with pedestrians). These assumptiame made because of the
computational burden of this analysis and becadsguate modeling of these processes
has not yet occurred. It should be clear that #tailkd modeling of how the vehicles get
into the road network is necessary because ofdbtenpal effects that this time can have
on emergency plans.

This exploratory research project focuses on thiGation of current evacuation
simulation technology, offering a systematic metilody concerning the evacuation
induced by emergencies from large scale commesh@gbping districts with parking lots
via a case study analysis. The overall goal of éxploratory study is to investigate
methods for simulating evacuations caused by emeygevents such as chemical
pollution and disasters that threatening the sabdtyhe public. There are two sub-

objectives 1) understand the state of the art fodefing large scale evacuations,



especially via simulation, and 2) developing, apply testing, and validating the
effectiveness of simulation models on realistic cenion scenarios. This research
project analyzes the state of the art for this typmodeling and makes recommendations
for improving evacuation modeling methodologies.atidition, through the case-study,
recommendations are made to improve the evacuatitire examined area.

This report is organized into the following secBoection 2 covers background
and literature within the area. Section 3 descrihedeling methodologies including data
analysis, data collection, model building, and ma@dibration within the context of the
case study. Section 4 addresses model experim@ntand result analysis. Finally,

directions for future research for large-scale eation are identified.



e
2. BACKGROUND AND LITERATURE REVIEW

Evacuation presents the immediate large-scale menewt resources such as vehicles
and people. An evacuation can be separated intccategories by size of the planning
region, including neighborhood evacuation and neglicevacuation. The former is a
smaller area evacuation, such as community evacydiuilding evacuation with parking
lots, etc. The latter involves urban evacuationhsas that associated with hurricanes
involving the evacuation of an entire city.

Generally, there are five phases within the evaonaprocess: emergency
detection, evacuation decision, emergency warniagd resources mobilization.
Evacuation plans are made to maximize the safetigeoevacuees but minimize the total
evacuation time for the entire region through vasioperational strategies including but
not limited to traffic light control, traffic flowcontrol, and evacuation sequencing.
Because of its ability to represent detailed dymamsimulation is an important analysis

technique within evacuation modeling.

2.1. Evacuation simulation

The methodologies and the application of simulatiathin emergency planning have
been under development for many years. Generalgretare three types of simulation
approaches: micro-simulation, meso-simulation amanmsimulation. Micro-simulation

tracks the detailed movement and interaction oividdal entities on the road, whereas
macro-simulation models the aggregate behaviorraffi¢ flows based on equations
stemmed from analogies with fluid flows. Meso-siatidn, a compromise between
micro-simulators and macro-simulators, focuses ba movement of platoons of

vehicles. (Piddt al.,1996; Southworth, 1991; Sheétial., 1982)



At the beginning of the use of simulation, only egggate simulation was used to
simulate network traffic movement because of thestaint of limited computational
resources. One of the most noticeable applicatiohsvacuation simulation was
presented by Shefé al. (1982). In order to estimate the clearance timénevacuation
of the area around nuclear power plants, Skeeti. (1982) described a macro simulation
model, NETVACI which considerethe problem of dynamic traffic assignments by
exploring the mathematical relationships amongfitralows, speeds, densities, and
gueues. Overall, there were two logical units i@ thodel; one was link pass, the other
node pass, which specifically handled the traffmnvé in the road and intersections,
respectively. As the authors described, NETVACI dated the drivers’ choice for
certain routes based on two factors including feukiliarity and myopic behavior. The
probability of selecting a route was determinedtihy driver's preference and traffic
speed in that link at each simulation interval. ldger, in real evacuations the selection
of routes is much more complicated and prone tagoaifected by other factors such as
the specific environment and conditions, evacuagiams, and other uncertainty factors.
In addition, the simulator assumed that the vebielghin a given time interval make
route choices as a whole, which probably does detaately represent reality. Consider
a group of drivers approaching an intersection e@sidcidently there is congestion in a
certain link. In this situation, the drivers probabo not select the link because of the
congestion in this time interval; however, it iglhly possible that the congestion would
be dissipated when the drivers at the end of tlemarrived at the intersection. The
choice made before, therefore, can not represerdithation in this time interval.

Under development in technology and methodologipglied to evacuation

planning, Southworth (1991) offered a systemativieng of regional evacuation



modeling. The author described an evacuation st@glyconsisting of five separate
processes: trip demand generation, evacuation wepatiming, destination choice,

routing assignment, and building-up of evacuatiten pand analysis. Based on these
stages, evacuation theories and simulation modete wtroduced. The author stated that
the network coding, spatial and temporal distributiof population, and vehicle

utilization were the emphasis of the trip generati®ince collecting data containing

population distributions involves considerable idiffty and uncertainty, especially in

varying location and time of day, it was common aspresentative that “worst case” or
“average case” evacuation scenarios, includingowuaripopulation distribution and

vehicle utility, were used to approximately captutke evacuation situations.

(Southworth, 1991)

In the paper, the author also summarized threecappes used to model the route
selection process: myopic route assignment, anmggtion model based route
assignment, and pre-specified route assignmentedder, the comparison of the static
route assignment versus the dynamic route assignwashpresented. He argued that the
dynamic assignment models were able to model tiemeldent traffic load rate and
route selection, because the static assignmentlragsdemed that the traffic loading rate
was steady in the simulation intervals.

With advances in technology, computation capabilligs improved the
application of micro-simulators. A sensitivity aysis of total evacuation time was done
by Sinuany-Stern and Stern (1993) with a specmukition language (SLAM I1l). Based
on an evacuation case study of a small city, toeyd that the total evacuation time was
susceptible to the route selection mechanisms dsaweeveral traffic factors including

friction with pedestrians, intersection traversitigne and population size. Two route



choice methods, shortest path and “myopic” viewrewentroduced to model the

evacuation. They concluded that the simulation ltesumere more realistic if the driver

selected links with the maximal distance from thstIcar on that road instead of the
shortest path. In addition, it was found that timeusation results would match better with
reality, when considering the interaction with pgdans and a uniform distribution of

intersection traversing time.

In the initial stage of evacuation, the authorsuas=d that the time consumed in
the warning dissemination and evacuation preparattas deterministic and evacuees
engaged in evacuating simultaneously; nonethelgaffic loading patterns to the
network was stochastic.

During an evacuation, instability and perturbatioray be ubiquitous in the
affected region. How to model the individual belwasiin response to evacuation is the
primary issue, which has been studied by many relsees during last twenty years.
Normally it will take some time before the publiedins to mobilize within the affected
region. Typically, the evacuation time can be paried into four stages involving
decision time, notification time, preparation tisued network clearance time (Urbarmik
al., 1980). Once the emergency happens such as ageatvack, the authorities have to
make a decision of whether to evacuate or not. @meevacuation is necessary, then the
evacuation order information has to be dissemind@tbwed by the preparation and
mobilization of the people within the affected area

The response time or departure time is from detgdthe emergency to starting
evacuation. Southworth (1991) stated that thereieir approaches used to capture the
response behavior of evacuees once the hazardseWappened, including derivation

from past evacuation data, intention survey to midkevacuees, experts evaluation, and



simulation based on the diffusion of emergency waynformation. The process of the
emergency warning dissemination was analogoushter @ommon information scenarios
without considering the time constraint (Rogers &wrensen, 1991). Rogers and
Sorensen (1991) compared the effectiveness of uaemergency warning mechanisms
including sirens and alarms, tone-alert radiogpiebne systems and dual media systems.
Rogers and Sorensen (1991) made an assumptioththatarning dissipation process
could be captured by a logistic curve or an S-stiap@ve, where the cumulative
percentage of warning recipients was modeled asnetibn of time. Sorensen (1991)
studied factors associated with individual variatin departure time, and concluded that
departure time was determined by the mode of thaing system, spatial distribution of
the population and type of living structure.

Different from previous large-scale modeling, néigthood evacuation analysis
requires the spatial details in the affected aaed, micro-simulators are the most detailed
transportation simulation alternatives for thiseyg analysis (Cova and Johnson, 2002).
Church and Sexton (2002) applied microscopic sitarlato the evacuation of a
neighborhood named Mission Canyon. Based on thencligopography in the affected
region, combinatorial scenarios, considering hoakkekehicles levels, opening another
road exit, and traffic control plans, had been tgved. The project evaluated whether
the current road capacity could support the evamudraffic demand, given that a
wildfire happened in the region. According to themparison among the simulation
results, the authors concluded that providing aerrshtive road exit and implementing
traffic control plans in both intersections and mesads can highly reduce the clearing

time.



However, there are several shortcomings in the rpapee authors simply
assumed that the percentage of vehicles loadirtgaffic networks at each time interval
was fixed. Actually it is a random value ahence the discrete distribution does not fully
capture the characteristics of the evacuation pmoceAdditionally, only three
deterministic levels of vehicles per household weesidered in the simulation model,
which was also stochastic.

In the case study of a hurricane evacuation inGape May County (National
Center for Transportation and Industrial ProduttiviNCTIP], 2007), emergency
planning zones were partitioned into small adjacemes for trip generation. One
noticeable scenario was the development of a ¢rddine contra-flow plan taken into
consideration within the simulation modeling. Lasmntra-flow plans alter the direction
of normal traffic flow in certain lanes, usuallyrfaitigating traffic congestion in peak
hours or evacuation. A logistic curve was assuneethet appropriate in modeling the
traffic loading pattern. Based on the how fast éhacuee responded to the evacuation
order, three types of response curves were praselo®, medium and slow. NCTIP
(2007) also described that vehicles rate per haldetvas estimated through two
strategies. One was the data based on the 2000s;ehe other was derived from an
increased owning rates model. In order to minimizeeliminate the uncertainty or
variability of the result, multiple simulation rungere performed for the reason that the
micro-simulation is a stochastic process.

For developing an emergency plan in a neighborlswade evacuation, Cova and
Johnson (2002) presented a methodology framewdnichaconsisted of two parts, one
was evacuation scenarios generation, the otherorsiomulator and GIS. Evacuation

scenarios generation was used to generate trigcemtresponse time and destination



choice, and then the micro-simulator and geograpifarmation systems (GIS) were
employed to simulate the traffic environments idahg network construction, route
choice and result visualization.

The authors argued that most researchers tookesitein the aggregate
performance in the evacuation such as the totalar&tclearance time, while ignoring
the importance of disaggregate performance likesbbold level evacuation, which
probably failed to distinguish the spatial variatim the different parts of the affected
area. (Cova and Johnson, 2002)

During trip generation, instead of quantifying tmember of the vehicles in each
household by determining the parameters such asehold occupancy rate, the number
of vehicles per house unit and the number of hawsés, the authors introduced a
Poisson distribution to simulate the number of glgs in each house at different times of
the day. Similarly, the reverse Poisson distributweas also employed to simulate the
departing time of evacuees in the neighborhood. atthor described four methods for
destination choice: closest exit assignment, traffata-based approach, manually
established method, and probabilistic approach.

A case study was presented in the paper for a caontynia a fire-prone canyon,
where the mean numbers of evacuating vehicles pasdhold and the mean vehicle
departure time, as well as a proposed access akea into consideration to establish
different scenarios. The spatial variation in ttaweme of each household was mapped
using GIS to indicate how much travel time was eeidr specific household and which
evacuees suffered from serious evacuation difffcult

Constrained by limited computation resources anticar requirements for

meticulous inputs, micro-simulators have been myaapplied to small areas. Piqued by



the realism, an increasing number of researchars tlmned their attention to modeling
urban scale traffic networks through micro simaas. One example of a micro-
simulation of regional traffic networks was presehby Satinnanet al. (2005), where a
micro scale simulator was used to evaluate thectfeEness of the proposed traffic
policies in Khon Kaen city

Another simulation model using MITSIMLab was consted to simulate the
evacuation for a neighborhood region, Los Alamosdwal Laboratory (LANL). Several
scenarios were considered, such as traffic resmicin certain routes, closing the current
roads and opening a new road. Based the perceafabe evacuees living in different
locations outside the affected area, a simpletgartassumption in selecting destinations
was made to construct the O-D matrix. Through dleatification of congestion locations
and the time-dependent curve of the percentageopdilption evacuated, a comparison
was made to evaluate the effectiveness of diffeemaicuation strategies. (Jiehal.,
2004)

Traditionally, most researchers assume that tipediemand can be estimated by
using the evacuation participation rate in thefitadnalysis zones and that evacuation
departure times can be modeled by a known responsgcurve. As an alternative,
however, Fu and Wilmot (2004) assumed that the rtmiogy of evacuation decision
made by evacuees could be captured in sequemtalititervals by a binary logic model
based on the factors of household type, hurricdragacteristics, evacuation orders by
authorities, and time periods in a day during aibane evacuation. Based on the model
developed, the dynamic demand assignment was a&chiey model the evacuation

demand in the initial stage of the evacuation. Wulel results also indicated that the



probability of evacuation will be affected by then¢ of day, that is, lower at night,
increase in the morning and peaking in the aftemnoo

For evaluating the minimum clearance time and edtng the quantity and
locations of the evacuees in specific time intesvaith VISSIM V3.70, Cheret al.
(2006) developed a micro-scale simulation which whi to simulate the collective
behavior of a group by capturing the individual &é&br of resources including vehicles,
pedestrians and their interactions. Based on tHemMitudy (Miller Consulting, 2001)
and a formula developed by Nelseh al. (1989), the number of vehicles in each
evacuation zones was determined by consideringraleV&ctors associated with car
ownership, households quantity, household particpaatio, house occupancy rate, and
vehicle usage level. Two response curves were tesaiimulate the departing time of
evacuees, involving the late response curve deedldyy Baker (2000) and realistic
response curves deduced from the evacuation oiddueg George. It was found that the
evacuation plan with the realistic response cuoedk less time than the one with the late
response curve, and the number of people trappetieirspecific locations could be
estimated based on the simulation results, givah al the routes were damaged and
could not be used to evacuate after the evacuatiter was made for a certain time.

Different from previous studies, Chen and Zhan @0@rned their attention to
determining the effectiveness of evacuation stiasemcluding simultaneous and staged
evacuation. The authors described that the altébelents were informed and evacuated
at the same time in the simultaneous strategy, edserin the staged evacuation, the
affected area was divided into several small zaes the residents were arranged to

evacuate sequentially.



An agent-based modeling tool, Paramics, was usedirtaulate the traffic
networks operation at a microscopic level for tragkthe movements of individual
vehicles and their interactions. By modeling thtgees of road structures including a
grid road, a ring road and a real road structuseunarious levels of population density
in the emergency plan zones (EPZ), it was found tha simultaneous strategy is
advantageous when the population density is lowardigss of the road structure,
whereas if the population density increased toagedevel, the staged evacuation time
was much less within a grid structure and the mead structure. (Chen and Zhan, 2008)

There are several potential deficiencies within plager. First, the study scope
was only a small area. Thus, the conclusions coimagiarger evacuations are limited.
Second, the paper did not take into consideratiendeparting time of evacuees, which
represents the reaction time from getting the eatian order to evacuate, and should be
added to the evacuation time in order to bettemese the time needed. Third, the rate of
vehicles per household was deterministic. In thghtli of simplicity and
representativeness, it may be reasonable. The nuofbeehicles per household can
fluctuate at different time of the day and for difint households. Third, in the dynamic
route choice, the authors simply assumed thathalldrivers were familiar with route
information, which is not necessarily true and tifamiliarity factors should be also
considered. Last but not least, no pedestrianantem was simulated in the traffic flows.

Instead of using microscopic packages as toolsriolate the evacuation process,
Liu et al. (2008) created a special corridor-based evacualstem integrating operation
strategies in route choice, contra-flow plan desigtersection signal control, staged
evacuation and interaction between pedestrians iadididual cars. As the authors

described, the system consisted of five models:utinmodel, database model,



optimization model, online macro simulators modadl @utput model. The input model
tackled with the network coding and specifying exaton demand, data of which was
stored in the database model. The optimization mo@es used to generate effective
evacuation plans including route selection, cofita- control and intersection signal
timing. Based on the specified network structuré emacuation plans, an online macro-
simulator was used to visualize the evacuation gg®@nd evaluate the corresponding
control plans.

With the emergence of GIS (Geographic Informatioyst&m), the area of
integrating GIS with simulation systems has reagiveore and more attention in
emergency planning. Generally, there are two pynfanctions in GIS. One is static
analysis including mapping and providing the mathtgcal analysis of information. The
other is dynamic analysis, where the GIS is use amta base for simulation and
displaying the dynamic simulation results. Radkel. (2000) argued that GIS could be
used in the preparedness and response processeajesroies including natural related
and human induced hazards. Another notable apigiicaf GIS in evacuation planning
was presented by Pidet al. (1996). In the paper, a spatial decision suppgstesn
(SDSS), linking a GIS (ARC/INFO) with a special muesimulator, was introduced to
support the development of contingency plan forcaaéion. In the system, GIS is used
for two purposes. One was providing data for thusator, such as topography and
spatial population distribution. The other was dsplaying results of simulation runs.
The micro-simulator was written in object-orient€d+, simulating the traffic flow on
the route; however, the model assumed that the meadorks were grid structured and

individual vehicles used myopic behavior duringteoselection. In addition, they did not



take into consideration the interaction betweenicles, especially with respect to
congestion.

Calibration procedures are an indispensable pasinmulation modeling, directly
determining the effectiveness and validation ofdimeulation results, since not all factors
can be presented by the default capability of s packages. For instance, it is
highly possible that the road structure within gaekages must be modified in order to
better reproduce real specific networks. Withinimusation of the city of Irvine in
southern California, by Chu (2003), the authorsromhiced a systematic and
comprehensive calibration procedure including digvbehavior calibration, route choice
calibration, dynamic OD estimate calibration, amdeftuning calibration. The GEH
statistic was employed to sort the traffic data aalkidate the results within OD demand
estimates. Two optimization functions were providedine-tune the process in order to
evaluate the simulation results. In addition, thaffic analysis toolbox prepared by
USDOT (2004) can be referred to as a general giidieg the calibration procedure of
micro-scale simulations for the aspects of capaoityte choice and system performance
calibration.

As an overview to previous literature, there is daubt that the modeling
methodologies in large area evacuation or neighldmathevacuation have been given
more and more attention in the past decades. Tiugegh focuses on presenting a
systematic methodology for evacuation modelingudiig key evacuation modeling

issues such as parking lot simulation, trip gemematind departure time modeling.



2.2. Parking lot modeling

While the efficiency and optimization of a parkifeg facility have been considered in
research papers, there has not been much studyateddn the evacuation behavior of a
parking lot in the event of an emergency. A smawild steady evacuation of a parking
lot is essential within evacuation plans, since the bemsvef evacuees in parking lots
would be highly affected by the design and openatibthe parking lot. Such factors as
the number and locations of exits and the distdrara the parking spot to the nearest
exit are important components in determining thecestion response rate.

To better evaluate the performance of a parkinglésign, Yue and Yong (1996)
employed a PC-based simulation package, PARKSIM2mbdel the behaviors of
pedestrians and vehicles in a parking lot. In paldir, the model can be used to simulate
the travel time and parking lot utilization. Mulgpparking lot designs were presented
and correspondingly the sensitivity analysis andlagon of the designs were performed
in terms of factors such as traffic flow, the numbé&parking spaces, O-D distribution,
etc.

Van Der Waerderet al. (2002) presented a parking model named “Parking
Analysis Model for Predicting Effects in Local As®a(PAMELA), to investigate the
effects of parking measures on the local areagogy in commercial shopping areas.
The model covers all aspects of a trip from whemogorist leaves his home to travel to a
parking lot, to when the motorist exits the parkiof PAMELA consists of several
components such as the choice of destination amdgort mode, parking lot familiarity,
and the choice of parking lot and parking spaceMERA uses an adaptive parking
choice behavior model to handle the situation thgtarking lot is fully occupied. The

model simulates the behaviors of drivers’ choosingarking space, such as keep



searching in the same parking lot, parking illegail the parking lot, or leaving to search
for available parking spaces in another parkingP&MELA also considers the parking
duration, which is the time taken for individuatsdonduct activities. This time can have
much influence on the behavior/operation of the lelparking lot.

Different from previous parking lot modeling, an eagtbased model,
PARKAGENT, was presented by Benensral. (2008). PARKAGENT can model the
dynamic parking process of an individual driveimeal environment such as driving to
parking lots, searching for parking spaces, ansgimngathe parking lot. PARKAGENT
was built on GIS layers and is able to present wedfic infrastructures such as road
attributes and parking lots. PARKAGENT operatesdiacrete time and space, and
vehicles in the model can periodically update tls¢éte. The model uses shortest route
assignment to model vehicle’s route choice behavioran intersection. To apply varied
agent behaviors rules to different groups of deyeéhe parking process was separated
into the following categories: driving towards tkestination, searching for parking
before reaching destination, searching for parkafigr passing the destination, and
leaving the current parking lot. PARKAGENT also geates important distributions
such as parking search time, walking distance stirtkgion, and parking fees, in order to
obtain the optimal parking place with the shorteee and distance and the least parking

fee.

2.3. Microscopic Simulator Review
With the development of powerful computational reses, Agent-based modeling
(ABM) also called individual based modeling (IBMjas emerged for modeling system

characteristics by simulating the individual beloawf the entities called agents in the



system. In ABM, an agent interacts with other agamid assesses its situation in order to
make decisions according to preset rules. ABM heenhbwidely applied because of its
great capability in capturing the collective belwavof the system. A number of ABM
simulators have been developed and applied in waffields, of which some applications
have already been mentioned. This section focuseedewing the primary software
tools available within this area.

TRANSIMS (Transportation Analysis and Simulatiorst&&yn), developed by Los
Alamos National Laboratory, was initially designied regional transportation planning
and air forecasting analysis. The micro-simulatotegrating transportation planning
models with advanced analysis models, can traclkdhieity of various resources and the
interactions between them second by second, imgudndividuals, vehicles, and
households, instead of aggregate traffic behavioemploys shortest-time paths with
dynamic feedback in route choice. Moreover, the NSMMS is an activity-based
simulator with 2D and 3D representation of the roeks.

As an agent-based micro-simulator, MATSim writtenJava is able to simulate
large-scale network traffic with millions of agentscluding demand modeling, traffic
flow simulation, and output analysis. It has beeainty developed by the Berlin Institute
of Technology (TU Berlin) and the Swiss Federaltitnge of Technology (ETH),
providing detailed result analysis and network &lgation enabling the modeling of the
individual movement of the agents. With the abilty modeling time dependent
networks, one of its applications is modeling ewdi@n scenarios. In addition, the
hierarchical XML file format greatly facilitates ghinformation exchange between

modules. However, the presentation of simulaticults is only available in a 2D format,



which is much simplified and makes it hard to digtiish the variety of traffic modes
(e.g. pedestrians, cars, trucks, and buses).

Created by MIT Intelligent Transportation SysterfisS) Program, MITSIMLab
was used to evaluate the traffic management sysiemigns. Microscopic traffic
simulator (MITSIM), as one of three primary modulesth additional traffic
management simulator (TMS) and graphical user faater (GUI), is used to track the
movement of traffic flows. The driver behavior mbdg is also embedded in MITSIM
with a probability based route choice model.

As integrated multi-method simulation software, Aagyc is able to support
various modeling on the basis of UML-RT and "HybS8thate charts", including ABM,
system dynamics and discrete event modeling. FaviABnylogic enables the modeling
of distinct activities such as agent movement, ageaial networks formation, and agent
communication. Written in Java, Anylogic can beraped in any platform and run on the
web. Although it can be used in emergency planm@ing offers detail result analysis,
Anylogic fails to differentiate the traffic modesdionly provides for 2D animation.

The off-the-shelf micro-simulation packages inclu@®RSIM, VISSIM, and
PARAMICS in the U.S. CORSIM, developed by Federapghway Administration
(FHWA) consists of NETSIM and FRESIM, and is aldestmulate the traffic in local
arterials and freeways. It is based on Link-basedimg without considering pedestrians;
whereas VISSIM, developed by Planung Transport &terkPTV), is Path-based routing.
It can simulate multiple transport modes includipgdestrian with 2D and 3D
presentations of results. At present it has beed usmore than 70 countries worldwide.
Another is Q-PARAMICS developed by Quadstone Patanfaramics can be applied

for the local arterials and regional freeway neksobased on Link-based routing. It



focuses on simulating the movements of people adtvidual vehicles, including the
interaction between vehicles, and vehicles and gigdas. It also involves the modeling
of multiple transport modes with 3D presentatig@hoa, Milam & Stanek, 2003)

Based on the comparison among CORSIM, VISSIM andrRias, Choast al.
(2003) concluded that the Paramics and VISSIM wertter in simulating a specific
traffic project. Krogscheepers and Kacir (2001 )spreed several application examples of
Paramics indicating that the Paramics could perfaeth in simulating networks such as
freeways, surface streets and dense networks.diiad there are numerous examples
where Paramics has successfully simulated traéftevarks. (Cheret al., 2006; Chen and
Zhan, 2008; Chut.al.,2003; Ozbayet al., 2005; Satinnarat al., 2005)

Our project aims to develop, analyze and evalulaéeevacuation of a region
when an emergency happens. The project theregqreres the following:

» Analysis of traffic networks in a small neighborldowith freeway, arterial road and
intersections

» Multiple transportation modes, especially the traglof the movements of individual
vehicles and pedestrians, and their interactiomduhe evacuation process

* Behavior simulation involving mimicking differenegarture time and dynamic route
selection

* Evaluation of simulation results including the it&cation of the bottleneck
locations in terms of congestion, total evacuatiome, average travel speed, and
delays in the system

» Animation/3-D presentation of simulation results

Based on the information above, we selected Pasafoicuse in this project.

There is no doubt that simulation packages caneptesent all aspects of the real



environment seamlessly and some requirements, roorkess, may be beyond the
capability of the software. Fortunately, one of tiagportant features of Paramics is that
it allows the modeler to develop real traffic maulsans without the constraint of a
default model. They can embed new algorithms, sagtcar flowing, dynamic route
choice, lane changing, and etc., into Paramics utiito the APl (Application
Programming Interface), which extends the capahilitrealistic modeling.

In the paper by Chet al. (2003),a basic methodology concerning the APl was
presented to enhance Paramic’s simulation abilitthe fields of lane changing, signals
control, collecting traffic information, etc. Moreer, Bartinet al. (2005) developed a
model for a specific traffic circle and roundabobtsusing the API of Paramics. In the
paper, a binary probit model was employed and rated with Paramics to model the
driver behavior of gap acceptance/rejection in atradled intersections. A trial and error
method was used to estimate the O-D matrix in tbdeh The comparison of the results
between the default Paramics and Paramics usingRlhelemonstrated the effectiveness

of using the API Paramics to capture the situation.



3. Methodologies

There are numerous methods available to model atiacusituations. This project
explores evacuation dynamics via a simulation aggho In this section, we provide
general modeling methodologies concerning traffimugations, since evacuation
modeling often involves traffic simulation. We thpresent specific methodologies for

the evacuation simulations used in this research.

3.1. General Traffic Simulation Methodologies Overview

Traffic simulations are divided into three categsrimacro-simulation, micro-simulation,
and meso-simulation. Although it may vary for diéfiet simulation categories, a general
traffic simulation modeling methodologies shouldlude following steps as shown in

Figure 1.
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Figure 1. A diagram of General Traffic Simulation Modeling Methodologies



1) Study Scope

This step is to identify and define the problemnc®i the simulation must perform
experiments by making effort to model real enviremty generally it is a time-

consuming and resources-intensive process. Siraglagiquires an understanding of the
problem such as the objectives of the study, sitimapackage selection, modeling
approaches, study timelines, etc. Therefore itritical and cost efficient to clarify the

problem before detailed modeling is initiated. lediéion, modelers have to make a
tradeoff between model accuracy and cost. The mccaracy that a model requires, the

more time and resources it takes to develop.

2) Data Collection

Traffic simulation involves the modeling of the newwents on traffic networks of
resources such as vehicles, pedestrians, respordersihe data required for building
simulation models may depend on the simulation pgekused and the study scope for
particular projects; however, in general data neunents include elements such as road
geometry data, traffic control data, traffic dematada, and model calibration data. Most
of these items can generally be obtained from lbealsportation agencies or emergency

planning departments.

3) Base Model Development
This step is to build initial traffic simulation rdels to represent the real traffic situation
within the simulation model. It includes three ebats: traffic network coding, travel

demand modeling, and traffic simulation modeling.



Traffic Network Coding

This step consists of three components: road aget&in, traffic simulation and transport
mode choice. The traffic network within the studsgion of the evacuation can be
constructed based on the road geometry data obtamedata collection. Traffic
simulation concerns the operation of vehicles ateg&ians on the road. The transport
mode choice focuses on what types of transport niwdesed in traffic such as cars,

trucks, pedestrians, etc.

Travel Demand Model

Travel demand modeling specifies the number ofateior people traveling in the study

region. It generally is a time-dependent varialsld & specific for each origination and

destination pair. The modeling includes:

* OD demand — Specify demand from an origination tdeatination. OD demand
information can be obtained from existing OD demédath.

* Route assignment model — Focuses on how a drivkesndecision to use routes in
the simulation. Generally there are multiple rodtwice models available, such as
myopic route choice, optimization-based route assEnt, pre-defined route
assignment, or shortest routes assignment.

» Traffic loading rate — Load the time-dependentfitah simulation model. The load
rate is either dynamic or static. For the dynarthie, loading rate varies at different
times, since traffic flow on the network may beuadtion of time. For a static loading

rate the traffic flow is deterministic and does ob&ange with time.



Traffic ssimulation model
This model is used to track the movements of taftich as vehicles and pedestrians. For
example, the movements of vehicles on a road dezrdmed by car following rules, lane

changing rules, gap acceptance rules, and oth&oenwental factors.

4) Model Verification and Validation

This step evaluates the effectiveness of the bagkeinGenerally, within an initial model

constructed in Paramics or other simulation sofwaumerous errors exist (e.g. traffic
flows not representative of actual). Therefore rficdiions have to be made to get the
model closer to reality. In addition, validation tie model can be performed by
comparing the simulation results with the obserdath obtain from data collection. A

procedure to calibrate the model is shownidure 2.
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Figure 2. A diagram of Model Calibration



5) Model Extensions and Application

In this step, the model is used to simulate reanados. This may involve the
development of additional models that are basednuip@ base model to include
important modeling extensions (such as contra flete,) In this step, multiple simulation

runs are required to get statistically valid result

6) Simulation Results Collection and Analysis
During the simulation model runs, the desired pemtnce measures of effectiveness

should be collected to analyze the model results.

3.2. Evacuation Simulation Methodologies Overview

Microscopic evacuations simulation has been ingattd and applied in many research
situations. This section presents a specific mailogy for evacuation modeling as

illustrated inFigure 3.
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Figure 3. Schematic of Evacuation Simulation Methdology

1) Data Analysis and Acquisition

Within a defined scope of the project, it is cafico identify what data is necessary to
construct the simulation model. The data requitd loe road geometry data, calibration
data, traffic condition data, resources data ofigipating evacuation, etc. For example,
road attribute data includes lengths and widthyesir speed limits. Without these data,
the traffic network cannot be constructed. Gengrddkese required data might be not

obtained directly from local agencies.



2) Traffic Network Coding

In this project, Paramics was chosen as the siowtat build the simulation network.
Paramics is able to input a variety of road datenéds to construct road network such as
GIS data and US Geological Survey digital orthophgiads (DOQs). Furthermore, the
initial traffic network built, Paramics allows dé&l modifications of roads to represent
the actual environment. Traffic speed limits hawéb¢ input and modified manually. In
order to capture the behaviors of people and vehiicl the evacuation, it is necessary to
simulate the real operation of traffic signals & tintersections. Multiple transport
modes are considered in the project. For instaseacuees may drive to escape or
choose to evacuate on foot. In addition, vehicfgesyare different between evacuation

traffic and background traffic in the affected @gi

3) Trip Generation

Evacuation represents massive movements of resowweh as vehicles and people.
Therefore, the number of resources participatintherevacuation must be estimated in
advance. Since the number of departing resouroesiable at different times during the
day, it is reasonable to develop a stochastic mideindomly generate the trip departure
events. In this project we assume that the numbgreople that desire to evacuate is
modeled by a Poisson distribution during the engivacuation time, given the average

number of vehicles for each trip origination.

4) Evacuation Rate Modeling
The concern in modeling the evacuation rate of eses is how to load resources onto
the traffic network, which is different than typideaffic network modeling. In this step,

we have to assign an evacuation beginning timeath evacuee. This process is also



stochastic. Typically, logistic curves (S-curveaph@rovide a good representation to of
this process, as indicated in the reviewed liteeatdVe can also model the evacuation
rate as a Poisson distribution, since the numberatuees beginning to escape is low at

the beginning of evacuation, increases graduallypeak, then falls towards zero.

5) OD Estimation

In an evacuation, generally the origin can be askbald, a parking space in a parking
lot, or a building. The evacuation destinations tensafe zones or shelters located
outside of the evacuation region. Generally, themee three methods used in previous
studies. The simplest method is the shortest distame, where vehicles are assigned to
the closest safe zones. Another is predeterminfedzeaes. In this situation, the evacuees
will follow government plans to safe zones. In didti, probability assignment is also
applied, where the probability for an evacueeslashto a certain destination is based on
considering integrated factors. (Cova and John2002) The demand for each OD pair

may be obtained from local transportation agencies.

6) Model Construction and Calibration

The traffic network automatically generated fronrdPaics contains errors in network
geometry, road speed limits, traffic control sejtinand other road attributes. First of all,
network modifications can be made according to @& and online maps in order to
make it closer to reality. For instance, intersatdi with multiple lanes and traffic speed
limits have to be modified manually. Checking thenaation results of the simulation

model is also an efficient approach to eliminatenanierrors. The default values of
parameters in Paramics models may not be accuratagh to represent the real

situation, and thus they can be calibrated witlpeesto the driving behavior model, the



route choice model, and OD matrix estimation. Fmtance, we can change a driver’s

behavior by tuning values of the mean headway aneérdreaction time.

7) Simulation Experiments and Results Analysis

In this step, multiple evacuation scenarios areelimed to investigate the effectiveness
of different evacuation strategies. For each seenare can vary factors such as the
demand files, evacuation rate, traffic operationd destination choice. Because of the
stochastic nature of the simulation, multiple regiions are required. In the results
analysis, the researchers generally take intenebbih aggregate network performance
metrics and disaggregate performance metrics. dimeelr includes total evacuation time,
average evacuation time, or average vehicle ddlag. latter performance measures
focus on results of individual evacuees such adclestevacuation travel times and
vehicle evacuation delays from specific locations.

In order to demonstrate the concepts presentedisnsection, the next section
presents a case study of the evacuation of thehiesgt Arkansas Mall and the
surrounding commercial shopping areas. We firstciiles the study region and the
expected data collection activities involving dehamalysis and data acquisition. Once
the required data is identified, data resourcesdatd sampling plans can be explored
and developed respectively, in order to gather pieghare the data for use within the
simulation model. Then key modeling issues areudised such as trip generation,
departure timing model, OD demand matrix, and paykot modeling. A procedure for
model calibration is also illustrated. The expemtagion and results analysis are
discussed via various evacuation scenarios. Thigakpaacuation time distribution is a
key performance metric of interest. Section 5 sunmea lessons learned from the

research and areas open for future study.



4. A Case Study

To better address the evacuation methodologie®emies in Section 3, we performed a
case study of a large commercial shopping areathi® section, we start with a
description of the study region to determine ouwrdgt scope. We then provide a
discussion on data identification and data acdaisitAlso, more emphasis is placed on
addressing simulation modeling issues. Finally, deselop evacuation scenarios and

summarize the results from evacuation data analysis

4.1. Study Region

Suppose there is a region where an emergency éventfire, terrorist attack, chemical
dispersion, etc.) is detected to occur in a cetiame. In such a scenario, all people (e.g.
customers, staff, etc.) have to escape to safes avghin the surrounding area. In this
project, the region around Northwest Arkansas Mall Spring Creek Centre, which is
within the red square shown#fure 4, was selected as the emergency planning zone for a
case study. The area is a highly visited shoppégipn with parking lots. Such an area
offers a prime target for emergency events sudheaselease of a bio-chemical agent or
a bomb attack by terrorists. The main local roadkiwthe study region include US 71,
East Joyce Boulevard, Main Drive, and East ZionRdde project assumes that only
mainline roads in the study area will be used faceiation. This case study focuses on
the process of how people evacuate to arrive ataa&as as long as the emergency takes
place, and how the evacuation effects traffic flowBuilding evacuation is not

considered.



Simulating Large-Scale Evacuation Scenarios in Commercial Shopping Districts —
Methodologies and Case Study
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Figure 4. The Commercial Shopping Area under Study

4.2. Data ldentification and Collection

Compared with other travel demand models, Paramespuires datasets having
significantly more details for both simulation mbdenstruction and model evaluation.
In this section, we start with descriptions of daeeds. We then present a detailed

description of how to perform data collection.

4.2.1. Data ldentification

According to the scope of the project, the dataiireg for building simulation networks

in Paramics can be grouped into following categorie




» Simulation Network Coding Data — Provides desarnipi of roads geometry, speed
limits, parking lot layouts, traffic signals opeaats, and other environmental factors
such as buildings or other facilities layouts.

» Traffic Operation Data — Provides general trafficaacteristics such as traffic
volumes, real traffic speeds, vehicle charactesstdriver behaviors, travel times,
existing origination-destination matrices of baakgrd, etc.

« Demand Generation Data — Capture the state of messuncluding people and
vehicles in the study region, such as the numbelistribution of vehicles in parking
lots or on roads.

* Model Calibration Data — Provides guidelines forifyegng and validating simulation
models, such as traffic counts, traffic volumesladervation stations, observed traffic
speeds, traffic delays, etc.

A detailed discussion on each of these categmipsovided as follows.

Simulation Network Coding Data

Network coding data primarily provides general miation about the geometry of roads
and traffic operation, from which a traffic netwodlan be constructed. In general the
network coding data includes: route geometry datHfic signal operation data, and

parking lot data.

1) Route Geometry Data

This data provides a general description of theradtaristics of roads in the affected
region including local arterials and highways. Galilg, it consists of the following

components:



* Lengths and Widths — Determine the extension amtihnof a road in two-dimension
space. For example, N College Ave cuts througlsthey region from North to South.
In addition, roads that can be divided into sevenadll road segments must be noted.
In addition, the speed limits may be differentttoe road segments along a road.

* Lanes — Include the number of lanes, lane widthe lancrements and decrements,
contra-flow lanes, lane usage on the roads andsexgons. For example, for the
intersection of N Mall Ave and E Joyce Blvd, thare three lanes along E Joyce Blvd
from East to West: one left turn lane and two difexv lanes.

» Curvature — Captures the drivers’ behavior duringinhg movements and gradients.
For example, a driver tends to reduce speed andtadjiver behavior on a vertical
curvature. (e.g., there is a vertical curvatureglthe N College Ave)

» Road Priority — Sets the priority of the right odyvon the non-signaling intersections.
It is important to modify the road priority in thparking lots to allow traffic flows to
properly operate.

» Free flow speed — Presents the maximum speed o¥er dvithout conflicting traffic
flows. In the project, speed limits of the road reegts were used to represent the

traffic speed.

2) Traffic Signal Operation Data
This data is used to control traffic flow, whichpresents the normal traffic operation
situation without evacuation traffic. For complgtetapturing the traffic control

characteristics, the following information is reid:



* The location and the number of traffic signals -tdbmine the locations of traffic
signals in the study region, especially on theikégrsections. (e.g., the intersection of
N College Ave and E Joyce Blvd)

» Signal Cycle Timing Plans — Describe the operapagerns of the traffic signals. A
cycle of a traffic signal includes several phasesnd which green lights, yellow
lights, and red lights operate iteratively. Genlgrdtaffic signals can be divided into
two categories. One is the fixed timing signalg tther is based on flexible timing
plans, that is, sensor lights. Therefore, it isont@nt to identify the type of signals and
their operational patterns. This information canpevided by local transportation
departments. For instance, there is a sensor signtie intersection of E Joyce Blvd

and Steele Blvd.

3) Parking Lot Data

This data provides descriptions of parking lotstive study region. The origin of

evacuation traffic is assumed to be within parkotg. Therefore, information on parking
lots such as the number and design of individuekipg spaces, traffic flow directions in

parking lots, speed limits, and the number of esitel entrances is required. For
example, there are about thirteen parking rows @@ individual parking spaces at the
Wal-Mart store within the study region. The speedtlis observed to be about 10 mile

per hour with bi-directional traffic.

Traffic Operation Data
Traffic operation data provides basic informatidioat the traffic situations and states.
This data is primarily used to construct the tafimulation model. Typically, traffic

performance data such as traffic speed, travel, tand traffic volume can be obtained



from numerous data resources. For existing OD oesriof background traffic, local
travel demand sources may be available; howeverddta may have to be modified
because traffic modeling is different when evaareti occur. Traffic operation data
primarily includes: vehicle characteristics andyoridestination matrices,

1) Vehicle Characteristics

In the project, vehicles are the main transport enadthout considering effects from
pedestrians. In general, vehicles characteristade the following elements:

* Vehicle Mixture by Type Data

Vehicle mixture by type data includes the inforroatiabout vehicle types and their
percentages. Different vehicle types may have daattributes and performance such as
the acceleration rate and the gap acceptance &rgaig lanes. Different combinations
of vehicle types may also affect the behavior affic flow on the whole. According to
observations within the study region, the vehiclix types can be grouped into two
categories by locations: the vehicle types in thekipg lots and vehicle types on the
roads. Generally the type of vehicles moving on rieenline roads is varied such as
trucks, buses, cars, etc, whereas the type of keshie limited within the parking lots. For
example, it is unusual to have large trucks mowiithin parking lots of a shopping area.
During evacuation, the former vehicle types aredusesvacuation traffic, and the latter
in background traffic.

* Vehicles Attributes Data

This data describes the outline of vehicles sudergth, height and width. Based on the
data, road usage for specific vehicles can be BpéciFor example, specific vehicles
may not be allowed to use a road in some circurastaguch as emergencies.

* Vehicle Performance Data



This data provides kinematical information of véésc such as acceleration rate,
maximum deceleration rate, maximum speed, and mawinrate of change in

acceleration rates, which also affects evacuaime.t

2) Existing OD Demand Matrices

The existing OD matrices are used to model backgtduaffic without evacuation. An
OD demand matrix represents the number of trips fam origin to a destination. Since
the data concerning the OD demand matrix of thé&dracind traffic is limited, the OD
matrices were built manually based on observedidrabunts. Typically, this can be
accomplished by distributing traffic volumes in taspects: traffic volumes entering the
study area and intersection turning volumes. Spedly, only peak periods in the
afternoon are selected for the simulation modelimghe project. In addition, only
mainline roads will be used in the simulation netwoonstruction; therefore, the existing

traffic flows can be reduced to several roads wipecific time periods.

Demand Generation Data

Demand generation data provides the informationresfources participating in the

evacuation. In micro-simulation modeling, demanceagation is one of the most

important steps, since it determines the numbevatuees during an evacuation which
will, in turn, affect the evacuation performanceen@rally, the demand data includes the
distribution of vehicles and pedestrians as follows

1) Vehicle Distribution Data

Based on the previous discussion, the originsip$ tinclude parking lots and locations

on the roads. For demand generation, the vehistelalition within each parking lot and



during study time periods is of importance. Forragke, the occupancy rate of a parking
lot is required to estimate the number of vehittee generated.

2) Pedestrians distribution

There are lots of shoppers and pedestrians withstudy area, such as Northwest
Arkansas Mall and Spring Creek Centre. During tecaation, the customers will desire
to evacuate as soon as possible. Therefore, theeruand distribution of the pedestrians
and shoppers should be estimated in order to sientia friction between vehicles and
pedestrians during peak hours and off-peak howgertively. In this project, transport
modes are constricted to be vehicles, not consigdhe interaction from pedestrians.

Pedestrians will be considered in future work.

Model Calibration Data

Calibration data is observation data from the esslironment. Based on the comparison
between simulation results and calibration datajdosimulation models can be modified
to represent reality. Calibration data primarilgludes two groups of data: traffic flow
data and traffic system performance data. Thei¢riifiw data is the same with the traffic
operation data such as traffic capacity, traffitunees, pedestrian data, etc. This data is
used to construct and validate the backgroundidraiimulation model. The system
performance data includes travel time, delay, gsieare freeways and arterials. In this
project, traffic counts at pre-defined observattations are used to calibrate the model.
The specific data survey was performed during aften peak hours on typical

weekdays.



4.2.2. Data Acquisition

Given the massive data requirements as discussie iprior section, it is important to
collect data more efficiently in order to save tiare resources. Based on the search of
local data resources, these data are sometimesaldeaifrom numerous agencies.
Unfortunately, there are only few data sources Wexe available for this specific study
area. Therefore, we performed some data collectianually to obtain the data for park
lots and traffic volumes. In this section, we firsroduce some data resources to use, and

then provide a general discussion on the data gymezess.

Data Resources

There are lots of local agencies that may be hketpfting the data collection phase of a
project. Some of the sources for this projecitided:.

* The Arkansas State Highway and Transportation Deyeant

» City of Fayetteville Transportation Division

* Northwest Arkansas Regional Planning

» The Center for Advanced Spatial Technologies

During the project, we primarily used the data frGAST (Center for Advanced Spatial
Technologies) at the University of Arkansas. Theéadplayed an important role in
constructing the simulation traffic network, andoyided part of the information
concerning traffic operation situation such as ¢tatrme. However, additional data

needed to be collected.



Data Survey Process

Given the scarcity of data it was necessary to ra#ngollect parking lot data, traffic
signal operation data, and traffic count data. @aéa collect process was addressed
generally as follows.

1) Parking Lot Data Survey

Because data concerning the distribution of vehiolethe study region was unavailable,
a data sampling plan was developed for parking Ginerally, a parking lot can be
simply described as iAgure 5. Each parking row can be partitioned into thregragate
parking zones. One is the nearest to the exit@fstbre. The second is the closer to the
exit. The middle of the parking lot constitutes tieenaining part of the parking lot. In
the project, we model the origin of evacuationficaby aggregated parking zones, not
individual parking spaces. In order to build an @&mand matrix, we have to obtain the
distribution of vehicles for each parking zone botHdifferent times of the day and in
different days of the week. Since our studied estion time is afternoon peaking hours,

the time to collect the vehicle distribution is 8hmin Table 1.
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Figure 5. Simplified Layout of Parking Lot
Table 1. Sampling Time Schedule
Cars Numbers (N(t))
Mon | Tue | Wec | Thu | Fri | Sa | Sur
Z | 4:00 pn
< |5:00 pn
8 |.6:00 pn
= | 7:00 pn

Considering the complexity and time consuming reatfron-site data collection, it is not
realistic to collect the data for each individuaklng zone. Therefore we developed a
simplified approach as follows. (An alternative \&y method of individual parking
zones is described in Appendix Al.)

Let N; be the total number of parking spaces in parkiotg,|andn;y be the
number of vehicles parking at parking jait time point of a dayd in a week, whereis
from 4 pm to 7 pmd from Mon to Sun.

» Countn;q for each parking lot



This step will not be concerned with the locatidrvehicles, but instead estimate the
total number of vehicles in each parking lot afedé#nt time points.
+ Calculate the occupancy ratg, that is, the proportion of the number of vehidies

the total number of parking spaces in parking &dtthe time: of dayd in a week.

Njtq

N;

Rjua = j€l, ..., ], te4,...7, del, ...,7

Based on the data sampling, the occupancy rateluthes for each parking lot
from 4 pm to 7 pm is different, whereas the occuyaate is similar for each parking lot
at the same time during a week. The observed oocypates for each parking lot are
shown inFigure 6. Generally, the occupancy rate on the weekerarget than on Monday
through Friday. In this project, we only considbe worst case with the maximal

occupancy rate for each parking lot for a day thhoa week.

Occupancy Rate
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Figure 6. Occupancy Rates of Parking Lots



2) Traffic Volume Survey
The traffic volumes from sources at important lamat are only available for peak hours

and off-peak hours. For example, there are two [eaks in data obtained from CAST:
AM peaking hours from 6:00 am to 9:00 am and PMkpeaurs from 3:00 pm to 6:00
pm. The rest of the time is off-peak hours. Thamfdraffic volumes from CAST are
only available for these three time periods andocaenot get hourly traffic volumes
during our period of interest. In the modeling bing process, however, we need more
detailed data, such as traffic volumes for everyrhan each road segment. Therefore,
nine key observation stations were selected asseptative of the entire simulation
network to count traffic volumes as showrrigure 7. The selection of these 9 observation
stations was designed to collect traffic countdath traffic directions with 15 minutes
time interval during time period 16:30pm to 17:3@ach observation station. The initial

observed traffic counts at each location are shiovaole 2.
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Obs Loc 16:30-16:45

Table 2. Observed Traffic Counts at Observation Stgons

16:45-17:00 17:00-17:15 17:15-17:30 Subtot

1 464 490 380 355 1689

2 415 425 340 320 1500

3 372 451 490 410 1723

4 365 395 425 366 1551

5 317 319 331 326 1293

6 205 205 239 250 899

7 164 163 143 143 613

8 94 104 117 103 418

9 110 103 104 100 417
87 79 78 68 312
177 210 204 226 817
170 183 163 181 697
264 260 277 197 998
309 259 286 266 1120
54 54 54 54 216
49 49 49 49 196

3) Traffic Signal Survey
According to the road network within the study meyitraffic signals are located on five

intersections shown with green circles rigure 8. Therefore five traffic signals are
necessary to handle traffic conditions in the satah model. For example, the traffic
signal timing plan for the intersection of E JoyBkd and N College Ave, that is the
intersection 3, is required. Generally, there mayséveral phases within a cycle of the
traffic light control. Within each phase, the diiea of the traffic flow is different, which
is controlled by red, yellow, and green signals.aAeesult, the traffic flow arrows and
times of signals (red, green, and yellow) are neglufor specifying the operation of an
intersection. As shown iAgure 9, there are 5 phases and only major directionsaffid
flow are shown. The analysis does not represeffictidows; however, those will be
considered within the simulation models. In additithe traffic signal timing plan will be
modified corresponding to its location. Because eswoads do not allow inward traffic
flows during evacuation, these roads will be bamead the corresponding traffic signal

will be cancelled. Since traffic signal 5 is a sanisased light, we cannot capture its cycle
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time. In this research, we define its cycle time $hme as the cycle time for traffic signal

4. (The traffic signal plans for other locations ar Appendix A).

Figure 8. Locations of Traffic Signals



Phase 1 Phase 2 phase 3 Phase 4 Phase §

R G Y |[R| G Y | R G Y |[R| G Y | R G Y
127 (1839|291 | 2 | 1377|431 ( 1.13 | 1845|244 | 1 [ 1891 | 35 | 2.16 | 22.46 | 3.34
192 | 2191|213 | 2 | 1347 | 34 1 1851 | 327 | 1 | 18.72 | 2.97 | 2.42 | 22.96 | 3.27
139 18.16 | 298| 2 | 1459 | 446 ( 1.28 ( 1981 | 3.12 | 1 | 18.72| 3.7 | 2.21 | 22.87 | 3.33
122 182 [ 3.64| 2 | 1443 ( 453 | 2.08| 19.71 | 386 | 1 | 18.39 (| 3.83 | 2.02 | 22.98 | 3.46
1.18 [ 1831 | 3.61 | 2 2.09 | 18.44 | 3.77 1892 | 3.91 | 2.11 | 22.79 | 3.39
1.17 | 18.27 2 2.09 315 239 3.44
Average 1 19 3 2 14 4 2 19 3 1 19 4 2 23 3

Figure 9. Traffic Signal Timing Plan on Intersectio of E Joyce Blvd & N College Ave (3)

4.3. Background Traffic Model Construction

Since Paramics has been selected, this sectiots stéth the discussion of the key
modeling issues for simulation model building, atien briefly introduces some
techniques in model calibration based on the us®asfmics. A background traffic
simulation model without considering evacuatiorfficaflow is established and model

validation is presented.

4.3.1. Key Modeling Issues

Parking Lot Modeling

Under an emergency situation, people will be degpeto leave the building, walk to
their vehicles, and drive out of the parking labithe traffic network. This process will
involve the movements of vehicles and pedestriansal as their friction. Emphasizing

the movements of resources (e.g. buses, trucks, @ard pedestrians) and their
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interactions during the evacuation scenarios, phigect emphasizes parking lots as the
demand origination points in order to reflect thalrtraffic flows during the evacuation.
Generally, in Paramics, a node represents an atios, a link represents a road,
and a zone built on a link can release vehicles tm network shown igigure 10. Area
zones can be used to represent residential ar@&ng lots, parking rows etc. (Qudstone

Paramics Ltd, 2009)

Figure 10. Network Coding in Paramics

Based on the observation of parking lots, it isiobs that parking spaces are close to
each other. In addition, an individual parking sp& generally less than 6 m in length
and 3m in width. However, Paramics requires thatrtinimum length of a link must be

20m in order to build zones for generating demaads, it appears to be impossible to
build two links with O distances next to each otf@r simulating individual parking

spaces. These restrictions in the physical modetaabilities of Paramics prevent it
from modeling individual parking spaces an origionegs. Thus, we decided to

approximately modeling a parking lot by aggregatearh parking row into several



sections. Since the project aims at analyzing araduating the evacuation plan over a
region when an emergency happens, this approacplis@® the detail within the
simulation.

In the approach, each parking row will be separatéa zones of about 20m.
Typically, there are three zones in each parkirg tlee closet to the entrance of the
building (parking row 1), the farthest (parking r@) and the middle between the two
outer zones (parking row 2). For example, as shiowrure 11, the parking spaces from 1
to 15 are in parking row 1, from 16 to 30 in patkiow 2, and the rest are in parking row
3. In this method, the vehicles are aggregatedeatth zone, and we only focus on the

collective behavior of each zone, ignoring the ifletaf vehicle movements contained in

each zone.
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Figure 11. Aggregate layout of the parking lot



Demand Generation in Paramics

There are several files used to construct simulathmdels in Paramics. These files are
briefly introduced in this section.

1) Demand File

This file specifies the number of vehicles to tlafem each origin zone to each

destination zone. We can define a demand file byicle type and demand period as
shown inFigure 12. For example, there are two types of vehiclehédase study, and two

demand periods from 4:30 pm to 5:30 pm and fron® @3 to 8:30 pm. Therefore, two

demand files are required to represent backgrotaftict and evacuation traffic during

each period.
Matrix Count: 2 5| DemandPeriod: 1 |5 Divisor: 1.00 |5 @ CurrentMatrix: 1 [$ Vehide Type: - ‘fi
Zone2 Zone3 Zone 4 Total
Zone 2 20 20 40
Zone3 20 20 40
Zone4 20 20 40
Total 40 40 40 120
Figure 12. Demand Files in Paramics
2) Profile File

Profile files specify a more precise traffic releaste, by dividing the simulation time
into small slices. Since the evacuation rate @gtsdstic and varied by time, Paramics
requires percentage input during each time slidé wail total sums equal to one. For
example, evacuation rates are 40%, 30%, and 30pectgely for period 1 irFigure 13,

given the time interval is 15 minutes for period 1.

Profile Count: |1 = Period Count: 2 : Interval: 20 |3 Current Profile: 1 S Divisor: 1.00 |< G]
Start Time Total
06:00:00 40 30 30 100

Period 1
07:00:00 40 30 30 100

Period 2

Figure 13. Profile Files in Paramics



3) Matrix File

The Matrix file specifies the percentage of vetschy type released for a given origin
and destination pair. For this case study, thezelwo types of vehicles. As a result, two
matrices: 1 and 2 are created in Paramics correlapgpho each vehicle combination. By
assigning the matrix number to each OD pair, wedsfine the percentage of vehicles
operating in the OD pair shown hure 14. In this research, these files are generated

using Java programming.

Matrix Count: 1 5 Current Profile Matrix: 1 = \»_:;'
Zone 2 Zone 3 Zone 4

Zone2 1 1 1

Zone 3 2 - 1

Zone 4 1 1 1

Figure 14. Matrix Files in Paramics

4.3.2. Base Model Construction

The base model is an initial simulation model whidickground traffic which involves
normal traffic such as peak-hour traffic and shopp&he objective of the base model is
to represent the evacuation traffic network andutate background traffic condition at
the beginning of an evacuation. Then, it is possiol model the interaction between
evacuation traffic flow and background traffic flosn the roads. In addition, the base
model can be used to assist with the validatiothefsimulation model by comparing the

simulation results with observed data.

Basic Assumptions
1) Only major roads in the affected region will be disas evacuation routes.
Background traffic flow is constrained to the maredefined roads and is not

allowed to use routes involving smaller roads.



In an evacuation situation, it is highly possilllattmost of the evacuees will select major
roads to escape rather than minor roads, and henwey not be necessary to model the
traffic flow involving minor road routes. In the sm@ study, traffic flows on the road N
College Ave, E Joyce Blvd, and N Mall Ave are stdddo be representative background
traffic flow in the model. Vehicles on these road$ not choose roads entering parking
lots.
2) Background traffic flow on the main roads of thensglation network can be
represented by observed traffic flows at the sutgegtions.
The traffic volume observed at a survey statiomdsumed to be equivalent to traffic
volume at that road segment, without considerirggdifference of traffic volume inside
the road. Only a few turning movements are allowadsome intersections to balance
traffic volumes on different roads. For instancepmose that there are three road
segments illustrated inigure 15 on North College Ave: segment #1, segment #2, and
segment #3, among which traffic volumes are difie@nong each small road segment.
In the case study, we assume traffic volumes beyloaahorth entrance of Mall (segment
#1) can be represented by traffic volumes at nuriBeand 14. Similarly, traffic volumes
at 3 and 4 are for road segment #2 between thé eattance and south entrance of the
mall. Finally, 1 and 2 are used for the traffic wmoles for road segment #3 beyond the

intersection of N College Ave and E Joyce Blvd.
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Figure 15. Representative traffic flows



3) No vehicle drives into parking lots, and hencefitaflows from main roads to
parking lots will be barred, and traffic signal timg plans will be adjusted
accordingly.

For instance, N Mall Ave within the green circlerigure 15 will be closed for vehicles

entering parking lots. This forces vehicles to bé @ble to driving out of parking lots.

This is reasonable because most drivers will desiescape out of parking lots (once an

evacuation begins), and drivers from backgrountfi¢ravill change their routines once

they notice the emergency. The resulting trafioevé will be distributed onto other roads.
4) Default vehicle type mix is used for the backgrotnadfic flow.

5) No perturbation factor will be considered. Drivamiliarity is assumed to be 100%.
The factors of perturbation and familiarity are dige control route assignments in
Paramics. The higher the perturbation factor vauthe more route choices are available
for a vehicle at an intersection. If perturbatier®j this means that the vehicle will follow
a pre-defined route and this route will not be updaperiodically. Generally, a driver
may decide to take a shorter route at an intesedtihe notices the current route will
take additional time to get to the destinationthie base model, drivers are not allowed to
randomly change routes at intersections. The bacikgt traffic is predefined to model

traffic patterns on main roads and all driversasgumed to be familiar with the roads.

6) Mean target time and mean reaction time is 0.680a41ls respectively.

Mean target time and mean reaction time are usetbute assignment algorithms,
therefore their value will to some extent affec gimulation results once the evacuation
traffic is loaded. Due to the scarcity of relevdata, we assume these values are known

as 0.62s and 0.41s respectively.



7) Traffic signals at intersections take fixed timipgns, without considering variable
timing plans (e.g. sensor lights).

In the study region, the diversity of traffic sigmianing plans imposes another challenge.
For instance, it is difficult to capture signal pdaif the traffic lights are senor based,
where signal time is highly dependent on the lerajtqueue on each lane. Without an
external programming package such as Programmegmia cannot model this
situation. For simplicity, the project assumes taktthe traffic lights are fixed timing
lights.

8) Two way left turn lanes (TWLTLS), called suicidenés or chicken lanes are not built

in the base model.

Network Coding

The simulation traffic network of the study regiean be built using Converter in
Paramics. Converter can extract network data fseweral data sources (e.g. emme/2,
ESRI Shape Files, Mapinfo, Corsim, CSV, etc.) andvert it into a basic simulation
network applicable in Paramics. For the case stB®RI shapes files from CAST were

used as the data source to generate the road ketwor
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Dataset Name Northwest Arkansas Mall
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668639.312500 671135.125000
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Figure 16. Dataset in Converter
As shown inFigure 16, Converter requires users to select input dataualgnand
there are several key parameters for a road (firfkaramics) listed as follows:

» Starting node

» Ending node

* One way

* Number of lanes

e Lane width

* Road speed (free flow speed, not speed limit)

Generally, the initial network transformed from ®erter contains numerous
errors, and hence modification of road attributas to be performed before using the
network. These modifications include: number ofelrat intersections, intersection

signal plans, lane width, lane length, free floweexqh, road vertical height, etc.
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Figure 17. Initial Transformed Traffic Network

The initial transformed simulation network from Genter is shown irFigure 17.

The area within the red square is the study redibere are numerous errors in the initial

network. The adjusted network is presentesgine 18s.

University of Arkansas — Industrial Engineering January 2010
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Figure 18. Simulated Traffic Network

Trip Generation

The background traffic is used to model the nortraffic on the evacuation roads, and
hence the origins of background traffic are noéveht to evacuation simulation model
results. In this research, it is assumed that \ehiare simply generated from upstream
nodes along a road, and run to the downstream obtlee road. Considering the study
region and application limitations of Paramics, eseviocations were selected to

represents origins and destinations as shownure 19.
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Figure 19. OD Locations for Base Model

Prior to constructing the base model, one additiossue must be resolved.
Vehicles observed on stations come from two sougaking lots and outside the study
region. However the base model should represerktgbaend traffic conditions as if
there is an ongoing evacuation; therefore, it it mecessary to include vehicles from
parking lots. The adjusted traffic count data basedreducing travel demand from
parking lots is shown imable 3. In the table, RRate represents the reduced rate the
original traffic counts. For example, -20% indicatbat background traffic volume is 80%

of traffic volumes observed.



Table 3. Modified Traffic Counts at Observation Stdions

Locations| 16:30-16:45| 16:45-17:00| 17:00-17:15| 17:15-17:30| Subtot| RRate
464 490 380 355 1684 0%
2 415 425 340 320 150( 0%
3 298 362 392 328 138( -20%
4 292 316 340 293 1241 -20%
5 254 255 265 261 1034 -20%
6 164 164 191 200 719 -20%
7 98 98 86 86 368 -409
8 66 73 82 72 293 -309
11 142 168 163 181 654 -20%
12 119 128 114 127 488 -30%
13 211 208 222 158 799 -20%
14 309 259 286 266 112( 0%
15 27 27 27 27 108 -50%
16 49 49 49 49 196 0%

Departure Time Model

Based on the observed traffic counts for 15 minaotervals at different locations, the
response rate of vehicles for each time periodssi@ed to be the average proportion of
traffic counts for that time period to total traffcounts obtained during study time. For

example, the response rate from 16:30 to 16:45 is

464 415 298 119 211 309
Yttt ottt =)
1689 1500 1380 488 799 1120 = 25%

14

This means that 25% of the vehicles will be reldab#ing the time from 16:30 to 16:45.
Similarly, the vehicle release rate from 5:30pm6t80 was modified and calculated

according torable 4.



Table 4. Vehicles Release Rate at different times

Location | 16:30-16:45| Percent| 16:45-17:00( Percent| 17:00-17:15| Percent| 17:15-17:30| Percent

1 464 27% 490 29% 380 22% 355 21%
2 415 28% 425 28% 340 23% 320 21%
3 298 22% 362 26% 392 28% 328 24%
4 292 24% 316 25% 340 27% 293 24%
5 254 25% 255 25% 265 26% 261 25%
6 164 23% 164 23% 191 27% 200 28%
7 98 27% 98 27% 86 23% 86 23%
8 66 23% 73 25% 82 28% 72 25%
11 142 22% 168 26% 163 25% 181 28%
12 119 24% 128 26% 114 23% 127 26%
13 211 26% 208 26% 222 28% 158 20%
14 309 28% 259 23% 286 26% 266 249
15 27 25% 27 25% 27 25% 27 25%
16 49 25% 49 25% 49 25% 49 25%

Average 25% 26% 25% 24%

4.3.3. Model Calibration

Calibration Procedures

During the construction of the base model, the oektbf trial and error was used to
calibrate the base model. By viewing simulationnation and comparison between
observed data and simulation results, numeroussecan be found and corrected. Key
modifications are discussed in more detail as ¥adlo

1) Traffic network coding errors
As discussed in the network coding section, a nuraberrors exist in the initial traffic

network converted from Converter. The correction natworking coding errors is
performed throughout the entire simulation modeldmg process. One of the most
important corrections is the usage of two ways tiefh lanes (TWLTLS) called suicide
lanes as illustrated irigure 20. TWLTLs are used for vehicles that change diretior
make a left turn toward on-coming traffic; howevthis situation is very difficult to

model in Paramics. According to the technical natesParamics, to some extent
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TWLTLs can be modeled by partitioning the lane iatseries of turn bays where a road
consists of numerous intersections and therefohéches can make turn movements at
each (virtual) intersection; however this is just @approximation and is not able to
simulate conflicting traffic flows. Therefore, TWLE are not included throughout our
model; however, it is necessary to include lefhitog lanes at some locations, especially

at the intersections illustrated in the red squarégure 20.

Figure 20. TWLTLs modeling in Paramics

2) OD demand assignment

Since the difference between simulation resultsabe®rved traffic counts at observation
stations should be small, it is important to dzite demands among these origins and
destinations properly. Without technical tools suabk Estimator in Paramics to
automatically finish demand assignments, it mustdbee manually. We can initially

simply assume that the traffic volumes are the sdarethe entire road without



considering the difference across different roaghsents as discussed in the assumption
section. Then we modify the demand assignmenttivetg until the difference between
simulation results and observation data is smalugh. The method of trial and error
was the main approach used.

3) Route assignment

This process is dependent on OD demand assignBecause background traffic is only
on main roads, the route assignment is determinigth known OD demand assignment.
Although this method simplifies the situation, ihosild be sufficient because the
objective of the base model is to model normal bemknd traffic and then simulate the
interaction between background traffic and evaowatiraffic. The routes used by
background traffic are pre-defined rather than camdhowever, the route assignments of
evacuation traffic will be updated periodically dbgh the evacuation process for the
reason that evacuees will be desperate to escapedffected region and will change
their route if they find a shorter route as timag®s within the evacuation scenario. The
evacuation model in the research is built on thekdpaound traffic model. If we load the
background traffic without any operating restrioBoin the evacuation model, its route
choice will also be dynamically renewed when evéoundraffic route choice is updated.
Therefore, the option "Route Control" in Paramicss to be used to control the
background traffic.

4) Challenging Problems
Some additional challenging modeling problems idehit

* Route control will not function correctly if the mier of OD pairs is over some
threshold value in a Paramics model. Reducing @Dspand user defined route

assignments can solve this problem.



* Route control may produce vehicle behavior erraasmg some vehicles to not

follow the route they are supposed to be on. Titisason can be improved by

deleting defined route choices and making reassegmsn or setting some road

priorities with higher cost factors, or barring sonoads.

Validation Results for the Base Model

Under multiple simulations with different randomeds, the simulated results were

obtained. The mean absolute percentage error (MAREYyeen observed traffic counts

and simulated traffic counts was used as a medsurgoodness of fit at different

observation stations as showrTinle 5.

MAPE = Tiz (M e (1) = M

sim (t)) / M obs (t))|

Table 5. Comparison of Simulated and Observed Traft Counts

16:30-16:45 16:45-17:00 17:00-17:15 17:15-17:30

toc | L sim| a0 | L] sim | ap | L] sim | D | P| sim | AD | mapE
1 | 464 | 01| 946 | 490 | 42060 | '31® | 3g0 | 41880 | 107 | 3ss | A7 | 1950 ) 1203
2 | a15| 3%0° | 1313 1455 | a7gs0 | 199 | 340 | 36300 | 6.76% | 320 | 3734 | 1070 | 1188
3 | 208| 21| o119 | 362 | %08 | 3080 | 302| 34507 | 7Y | 328 | 33 ® | 200w | 6.73%
4 | 202| %51 113 1 316 | 32670 | 3.399% | 340 | 31767 | 6.57% | 298 | 34O | 9.73% | 7.70%
§ | 254 | %% | a57% | 255 | 27650 | 8.43% | 265 | 27160 | 2.49% | 261 | % | 1889% | 4.34%
6 |16a| 19| 1278 164 | 20033 | 2505 | 101 | 19274 | 0.919 | 200 | 1° | 5.03% | 107
7 | 98 | 7753 | 2988 | 93 | 9380 | 4.20% | 86 | 9267 | 7.75% | 86 | 91.43 | 6.32% | 9.81%
8 | 66 | 7357 | 1048 | 73 | 73567 | 0.78% | 82 | 7243 | 'O7 | 72 | 7063 | 190% | 6.45%
11 | 142 | 1751 10921 168 | 18257 | 8679 | 163 | 18113 | 112 | 181 | 18| 160% | 8.08%
12 | 119 | Y101 4150 | 128 | 12440 | 2819 | 114 | 12063 | 5.82% | 127 | M3 | 6.01% | 4.70%
13 | 211 | 9% | 9.05% | 208 | 189.27 | 9.019 | 222 | 214.43 | 3.41% | 158 | 13 | 1909 1 95404
14 | 300 | 2T>7 | 1044 959 | 28683 | 107 | 286 | 28137 | 1.62% | 266 | 27V° | 180% | 6.15%
15 | 27 | 2753 | 1.98% | 27 | 28.267 | 4.69% | 27 | 27.00 | 0.00% | 27 | 2593 | 3.95% | 2.65%
16 | 49 | 4757 | 2.93% | 49 | 47.467 | 3.13% | 49 | “®5%% | 0759 | 49 | a7.27 | 354% | 250%
MAR 9.43% 7.59% 5.77% 6.60% 7.35%




The comparison of observed and simulated traffient® within different time intervals

can be also presented using column graphs as simowrigure 21, Figure 22, Figure 23, and

Figure 24.
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Figure 21. Simulated vs. Observed Traffic Counts fsm 16:30-16:45 (MAPE 9.43%)
/ N\
MW Observation
MW Simulation
1<
>
o
(@)
2
IS
l_
Observation Station
- J

Figure 22. Simulated vs. Observed Traffic Counts im 16:45-17:00 (MAPE 7.59%)
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Figure 24. Simulated vs. Observed Traffic Counts fsm 17:15-17:30 (MAPE 6.60%)

Based on the results, we find that the mean alesgatcentage error (MAPE)

over all is 7.35% and the maximum MAPE is 9.43%hug, we assume that the

developed base model is sufficient for modelingliaekground traffic conditions. And




hence, the assumptions made above appear reas@amabt=an provide a solid base for

developing evacuation simulation models.

4.4. Evacuation Model Development

In this section, we primarily focus on the constiart of the evacuation model by loading
evacuation traffic on the background traffic moleilt in Section 4.3. Similarly with the
construction process of the background traffic nhode first address key modeling
issues such as trip generation, departure timindetn@nd destination choice. We then
present a procedure for building the evacuatioffi¢ranodel in Section 4.4.2. Finally,

model calibration is discussed in Section 4.4.3.

4.4.1. Key Modeling Issues

Trip Generation

Prior to modeling the evacuation of resources,atemation of the number of vehicles
from parking zones should be done based on colletata. Suppose one parking row can
be divided into several parking zones as illusttaite Figure 11. Assume there is a
descending priority for drivers to park vehiclesenfr the first row parking zones to the
third row parking zones. In other words, driverstfichoose to park at the parking zones
closer to the entrance to the shopping buildingsn tpark at the middle parking zones, at
lastly they decide to park at the furthest zonescohding to the occupancy ratgg
obtained for parking lot j at time point t of daywle constructed the simulation models
with the occupancy rates of the parking lots atdheent occupancy rate and at 85%e,

and then simulate the layout of the vehicles inghking lots.
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Figure 25. Vehicle Distribution Curve at Wal-Mart

Take the parking lot of Wal-Mart for instance, mo$tvehicles are spread over the area
around two entrances as illustratedrigure 25, and hence we can draw a distribution
curve, given the occupancy rate of the parkingBatsed on the curve and zones in the
simulation network shown iRigure 26, we can then approximately estimate the average
number of vehicles parking in each zone. Therenareegular methods to distribute the

vehicles to each zone, thus we just distribute thenually.
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Figure 26. Parking Zones Layout at Wal-Mart

Given the average number of vehicles in each pgrkone, we assume that the
number of vehicles;; originating in a parking zong, is Poisson distributed, since the
number of vehicles in a parking lot is random &edent times of a day.

Xjj~ Poisson (};)
The},; represents the mean number of vehicles distribuiaaually in each parking zone.
This rate may be different for different parkinghes. For demand files in Paramics, we
can use Java programming to randomly generate timeber of vehicles for each

origination-destination pair and then generate ed#iit demand files for different



experimental scenarios. Demand files are discusgen we cover demand generation

in Paramics.

Departure Time Model

The concern in the departure timing step is howaal traffic on road networks once the
evacuation order is executed. This research asstimégieparture time includes both
notification time and evacuation preparation timeun evacuation.

There is no doubt that the time for each evacueevezuate is uncertain. It is
reasonable to make an assumption that the protyatlégnsity of evacuation departure
events varying by time is a Poisson distributioo&€ & Johnson, 2002), because usually
evacuation rate is low at the beginning, peaksgatiygland later reaches a trough. Based
on this assumption, each evacuee can be assigrnmdeainterval during which the
departure event happens. Suppose N is a randoableathat represents the number of
the departure time intervals with T minute incretsen the total evacuation time, and
assume that N can be described by a Poisson disbribshown inrigure 27 whose
corresponding probability is (essentially) the eison rate during a certain time

interval:
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Figure 27. Depérture Timing Model with a Poisson Dstribution

Where,

vy is the mean number of departure intervB|gepresents the percentage of
vehicles evacuated within the time interval n, @tfidis the mean departure time for all
vehicles.

Based on the equation above, we can determineetimporal distribution of

departure vehicles. Le = Z%zlz}ﬂxu, be the total number of vehicles generated in

zones. ThuX = P, represents the fraction of vehicles assignecpad in interval n.

Destination Choice

This step mainly addresses the issue of how t@tsetde zones in order to assign traffic
demand for each OD. The study region can be parét into numerous traffic analysis
zones (TAZs) based on GIS data in conjunction ywahpulation distribution information.
Suppose there are limited safe zones with partiqud@ulations outside the emergency
planning area, each parking zone is deemed to @elemand origin, and people (such as

shoppers, pedestrians, or other staff) at eachinotgme from these safe zones.



Therefore, it is highly possible that people chotmsgo to a certain safe zones (i.e. their
home zone) once the emergency happens. Theref@egssumption can be made that
traffic demands from origins within the planningarto each safe zone are proportional
to the population in these safe zones. For a siiaée model, the traffic demand from

each parking zone can be also divided equally.

4.4.2. Base Model Construction

The evacuation simulation model was initially counsted by loading evacuation traffic
flow into the base model. Therefore the backgrotmaffic was kept the same in the
model. Based on this model, we constrain any mmatibns of the model to only the
model construction assumptions and model paramatastser than changing the basic
simulation network coding. For example, we may ¢eathe right of way for roads but
not modify the road network such as deleting roadsling more lanes, reduce two-way

road to one-way road, etc.

Basic Assumptions

1) Evacuation occurs suddenly with basic traffic flows
In this model, the evacuation traffic will be loadato the affected region after 5 minutes
from the beginning of the simulation. This is thegation “warm up period” when the
background traffic has been already loaded in #te/ork, which improves the modeling
of the interaction between evacuation traffic andkground traffic.

2) Only main roads can be used by vehicles.
This assumption includes two aspects:

* Vehicles traveling on main roadannot drive into parking lots to use routes inside of

parking lots.



» Vehicles generated from parking zones can exitctlyéo main roads, or turn around
in parking lots to use the shortest routes theyfoah however, if the vehicle exits a
parking lot it cannot return to a parking lot.

3) The area outside of the affected region can bededaas safe zones.

4) Perturbation is 5% and familiarity is 95%. In awmaeuation model, route
assignments for vehicles are dynamic and updateddoeally. With perturbation
5% and familiarity 95%, we assume that not all exion vehicles are familiar
with routes in the study region and they can chdbs& routes dynamically at
intersections.

5) Traffic flows generated from parking lots are diffiet from the background traffic
flows introduced in the background model. (e.g. ieleh mixture by type,

evacuation response time, OD demand)

Vehicle mixture by type

Since the project focuses on evacuation from lahggping areas, the vehicles generated
from parking lots should be different from normaftic flows. Due to scarcity of data on
vehicle types and different characteristics of gkds in the aspects of physical attributes
and kinematics, this research uses 10 types ofreatréncluding vehicles such as bus,
truck, or long vehicles. The proportions among ¢hashicles are assumed to be the same,

that is, 10% for each vehicle type.

Trip Generation

As discussed previously, there are two types dficriows: one is the basic background
traffic, the other is evacuation traffic. This poj assumes that parking lots are the
origins for evacuation traffic and the areas owsdl study region are the safe zones or

shelters, which serve as the destinations of thew@®es once an evacuation occurs.



Based on the parking lot survey data, we can obidaénaverage number of
vehicles for each zone. Under the assumption t@tumber of vehicles at different
time of the day is a Poisson distribution as disedsn Section 4.4.1, the trips generated
from each parking zone can be randomly generat@tceSthere are almost four
hundredzones in our study region, it is impracticalnput demand data manually into
Paramics. According to the format of demand file®aramics, we generate the demand
files automatically using computer programming. Tpet of the pseudo code for
generating demand files from parking lots is shamvaxhibit 1. The format of a demand

file in Paramics which is generated from progranmmsillustrated irFigure 28.

Exhibit 1. Pseudo-code for Trip Generation in Parlng lots

1 READ a value from average data file as Avg

2 SET inputdata equal to the A

3 SET row equal to 1

4 WHILE (row<=0D and inputdata !=null)
5 SPLIT inputdata and store into an ar
6 SET avg=array[1]

7 IF Avg>0

8 PRINT “from” +" " +row+"

9 FOR each value X&Y from Ol

10 IF (X!=Y, 371<=Y<=378 and Y!=375JHEN
11 CALL rgn.getValue() from Poisson class
12 SET z=rgn.getValue()/(7*divisor)
13 ELSE

14 SET x=0

115 ENDIF

16 IF Y<384

17 PRINT z and "

18 ELSE

1¢ PRINT zand " '

20 ENDIF

21 ENDFOR

22 ELSE

23 PRINT “from” +" " +row+"

24 FOR each value Y of OD

25 z=C

2€ IF Y<384

27 PRINT z and "

28 ELSE

2¢ PRINT zand " '

30 ENDIF

31 ENDFOR

32 READ a line from average data file
33 SET inputdata equal to the Avg
34 ENDWHILE

35 CIOSE output file and input fil
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Figure 28. Format of Demand Files generated from Rigramming

Destination Choice

For the study region, seven safe zones distribatednd the outside of the emergency
region are designed to release background trafiicadsorb evacuation traffic as shown
in Figure 29. In this model, we assume that the probability theehicle from a parking lot
chooses any one of the safe zones to go is the, shates, vehicles generated from a

parking zone will be equally distributed to sevafeszones.
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Departure Timing Model

Response time is the time from when evacuees lealzed the emergency and start to
evacuate. Its value is variable for different evesss Suppose that the response time for
evacuees in the affected region is a Poisson ldigion with mean time 15 minutes,
which is the time of receiving an evacuation or@iting a shopping building, walking
to their vehicles, and beginning to drive out ofkqrag lots. The departure timing model

takes the response time and translates it intbanafiease rates for different time periods



at the start of an evacuation. The calculateditraglease rates onto the network are

shown inFigure 30.
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Figure 30. Response Rate for Evacuation Traffic

4.4.3. Evacuation Model Calibration
When observing the animation of initial evacuati®imulation model, we can find

numerous unrealistic situations, which must beesied:

1) Traffic congestion in parking lots

During simulation model runs, many vehicles becateadlocked within the regions
circled with red lines irFigure 31. The vehicles wait for an excessive amount of tilnget
out of the region. For instance, most of the vesict intersection A can select road 1
rather than road 2. This increases the likelihdwat vehicles will be stuck on road 1.
However, there is space available on road 2. Thecks on road 1 are supposed to
select road 2 if there is space available on roabh 2his situation, we can iteratively

modify the road priority where these deadlocks occu
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Figure 31. Traffic Congestion in Parking Lots

2) Intersection Congestion

Vehicles become deadlocked at some intersectiotha@mnot move at all, which
cause terrible traffic gridlock during the evacaatihence evacuation times tend toward
infinity. In Figure 32, for instance, there are multiple conflicting @sng) traffic flows.
Thus, vehicles can become entangled within thersatdions. There are two methods
available to avoid deadlock congestion at the saetions and parking lots: Lane priority
changes or using the blockage removal tool in Pasanihe former aims to constrain the
freedom of vehicles choosing routes. For instamee,can bar vehicles not to enter
parking lots and prevent them from turning aroundthe parking lot after they are
generated. The latter can reduce the congestiorefimpving the deadlocked vehicles;
however this is not appropriate for evacuation.8®se one of the project objectives is to

identify traffic bottlenecks, we need to identifyrare traffic congestion occurs.
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Figure 32. Traffic Congestion at Intersections

3) Left turn gridlock and lane choice

When calibrating the simulation network, the tughimovements in the intersections do
not always operating in a realistic manner. Fomgxa, there are 3 lanes: lane 1, land 2,
and lane 3, in road #1 as showrridure 33. Lane 3 is for left turns from intersection A to
intersection D. In this research, the traffic imsiicted to run on Road #1, and not
allowed to make turning movements at intersectio®Aand C. Therefore, vehicles that
will turn left on intersection D are supposed t@ige to lane 3 as soon as possible if
they find there are many vehicles waiting aheadaime 3. However, as shown in the
figure, most of the vehicles do not tend to movéate 3 until they arrive at intersection
C, and at that time there are many vehicles queiirtge lane 3 from intersection D to
intersection C. In this situation, these vehiclaséhto wait at lane 1 or lane 2 until there
is a gap for them to move to lane 3. Thus, theséngavehicles will prevent vehicles

moving towards other destinations (e.g. vehiclesving directly to the West) from
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moving forward, and hence cause traffic gridlodk. reality, this is extremely unlikely,
vehicles turning left will only queue or wait omk&a3 not lane 1 or lane 2, and they may

begin to change to lane 3 from intersection A.
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Figure 33. Left Turn Gridlock and Lance Choice

In Paramics, there are two methods that can beeajal solve this problem. One

is changing the signpost distance or signrangarmtstas shown in pink line ryure 34.
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Figure 34. Sign-post Distance and Sign range

Sign posting distance is the distance from hazeatere drivers will realize the hazards
ahead. Hazards are generally intersections, fatikgrge, etc. Once a driver sees the
hazard such as an intersection he will decide bagetiis pre-defined distance if a lane
change such as making a left turn movement is reduif a lane change is necessary, the
vehicle will attempt to change into the requireshdaby the normal lane changing
procedure. In Paramics, vehicles have to wait émepted gaps on the lane they attempt
to change in case of a collision, where a gapasdistance between a leader vehicle and
a following vehicle. Therefore if a gap is not dable immediately the vehicle will carry
on until a gap is available. Based on this infororgtwe should theoretically extend the
signpost distance as long as possible, at leasheéixig to intersection A; however, this

does not work and we cannot change the signpdst to
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The other method is "Lance Choice" in Paramics.eL@hoice is more like a pre-
defined route choice, where we can define certautes and force vehicles to follow
them. For example, we can force all vehicles tooskahe left turning lane from node A
as shown irFigure 35.
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Figure 35. Lane Choice Rule in Paramics

Theoretically, this should reduce the congestionthe intersection, because all the
vehicles will tend to move to lane 3 first and s turning left will not encounter
conflicting flows. However, the simulation resultsdicate that the method does not

improve the congestion.

Based on these calibration procedures, the modeiotarepresent the reality
appropriately; therefore we have to calibrate thedeh by modifying the basic road

network described as follows.



Simulating Large-Scale Evacuation Scenarios in Commercial Shopping Districts —
Methodologies and Case Study

1) Modify network coding by changing some roads to wag

Because the evacuation traffic is not allowed ttereparking lots after they depart, the
inward link can be barred or simply modeled witle avay traffic. In the model, road B,
road C, and road D was change to be one way, amdthie signpost distance increased
from 172.5 in to 307.9 ft as shown fure 36. The system performance was improved,

and the corresponding total evacuation time foceation traffic was decreased.

Figure 36. Modified model with one way

2) Change the priority of traffic flows

The priority of traffic flows generally means tha¢ can set the right of way for different
roads on the intersections. In addition, we cao #&e advantage of the Force Cross
function in Paramics to generally control the wagtitime for vehicles crossing
intersections. Since this is an evacuation motled, unrealistic if vehicles wait too much
time at intersections. In the initial model, howeué was observed that many vehicles

wait too much time at the intersections for a gamerge into their desired traffic stream.
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By using theforce mergeandforce crosstools in Paramics at the exits of parking lots,
we can force vehicles to cross intersections #ffiey wait a certain time. The red points
in the Figure 37 are the roads where the Force Across function apdied within the

model. However, one of the deficiencies of thisrapph is that the patience parameters
in Paramics to control the waiting time cannot kbedified. Based on the technical notes

of Paramics, the default patience time is about @ Binutes.

Figure 37. Roads with Force Cross function

3) Change the feedback period

In Paramics, vehicles update their routes accorttimgute cost per cycle. Generally, the
route cost is the time that the vehicles take totlg@ugh the road, and the time may be
different at different times. For example, if theseserious congestion on the road, the
cost becomes too high to be selected by driver®aiamics, the feedback period is the
time at which road times are fed back into road casculations. At the beginning of

each feedback period, Paramics performs routecadstilations in order for vehicles to



choose the route they desire. The length of feddipaciod affects directly the route
choice of vehicles. For example, if the feedbaekiqa is 5 minutes, then vehicles will
update their route choice every 5 minutes, andsd aneans that they will keep on the
chosen route for at least 5 minutes even thoughrdbte has serious traffic gridlock.
Theoretically, the smaller that the feedback peispdhe more vehicles are able to update
their routes. However, the smaller feedback per@do require higher CPU time and it
is highly possible that vehicles keep finding thersest roads all the time, which can also
cause serious congestion. Therefore, we haveytdifferent feedback periods for
specific simulation models. In the project, we wadle the feedback period of 3 minutes
based on observed preliminary simulation resultsltigle simulation runs have to be
calibrated individually, and then all the adjustisemust be applied to one model before

being able to run in batch mode.

Based on these strategies, the modeling of the &éaseuation simulation model
was completed. In the next section, different expents are performed for different

evacuation scenarios based on the base evacuabibel.m

4.5. Experimental Scenarios, Results, and Analysis

Evacuation may be dependent on various factors sghraffic control policies,
evacuation routes situation and selection, evamodieginning time, etc. This section
tests the effectiveness of the evacuation modeldelbgloping different scenarios, based
on the constructed evacuation model in the SedtidnWe will start with descriptions of
the evacuation scenarios and provide corresporaisgmptions. We then post process
each evacuation scenario and perform analysis flteein Section 4.5.2. Finally, an

overall analysis is provided in Section 4.5.3.



4.5.1. Evacuation Scenario Development and Assumptions
The project is based on the assumption that aicestaergency (e.g. fire, terrorist attack,
chemical pollution) occurs somewhere within thedgtarea. This document only focuses
on the process of how vehicles evacuate to artigaf@ areas as long as the emergency
takes place, and how they affect the surroundiaifjdrflows.

According to data availability from CAST, the simatibn models were
constructed based on the forecasted traffic candiif 2010. Based on the characteristics

of the study region, there are several factorsriat affect the evacuation.

1) Occupancy Rate

The origins of vehicles are parking lots in the mbing areas, and hence the
occupancy rate of each parking lot will influendee ttotal evacuation time. In this
project, we consider only two occupancy rates: enirroccupancy rate without

emergencies and an 85% occupancy rate.

2) Background Traffic

During evacuation, the government may guide theaijmn of background traffic. For

example, police may stop outside traffic flow fr@antering the affected region. In this

project, we consider three situations concernirgdidickground traffic as follows:

» The background traffic stopped suddenly after 16ut@is from the beginning of the
evacuation.

» The background traffic is reduced gradually aftérminutes from the beginning of
evacuation, according to a Poisson distribution.

» The background traffic remains the same as théarféw from 4:30 pm to 5:30 pm.



3) Traffic operations/ network configuration
In the project, we assume that traffic signals afgenormally without considering

interventions from the traffic department.

4) Study area population
Since emergencies may occur at any time, both peaks and off-peak hours are
important; however, only peak hours will be covenedhe project in order to examine

the effectiveness of evacuation strategies in timtext of worse case scenarios.

5) OD matrix and route assignment

Based on the discussion in the Section 4.4, parkitsgare demand origination points in
the study area, and the safe zones are the aresadeoaf the study region. Evacuees (i.e.
vehicles) are able to select any direction for pecé&ince driver behavior during an
evacuation may be different when compared with rtleemal conditions, it is very
difficult, if not impossible, for us to accuratgbyedict the traffic demand on each route.
As an alternative, we assume a balanced routeressig approach, where the proportion
of the vehicles originating from a certain zone aodg each safe zone is the same. In
addition, evacuation traffic is loaded into the glation network after 5 minutes from the
beginning of the evacuation to better model therawdtion between background traffic
and evacuation traffic. Based on preliminary ressutie background traffic is completely

distributed around the study region after 5 minutes

6) Response rate
A Poisson distribution model discussed in Sectighl4is used to model the response

rate.



We only vary two variables: response rate and backgl traffic operation level, with
which six evacuation scenarios can be developeluasated inFigure 38. Each scenario

is described in more detail as follows.

Normal
"] Occupancy Rate
Gradually Decreaged Background
Traffic
System Variables L No Background Traffic

Background Traffic Keeps the Same
Level

85% Occupancy
Rate

Figure 38. Evacuation Scenarios Development

» Evacuation Scenario 1- Normal occupancy rate without evacuation andsame
background traffic level during evacuation.

This scenario is the combination of the followirgtors:

The background traffic will be the same during exson, assuming no intervention
from police or government.

» The occupancy rates of parking lots are the sanm@iasal conditions.

» The response time model for the evacuees is basadPoisson distribution.

» The number of vehicles generated from parking tbt is, the number of evacuees, is

also Poisson distributed.



« Other factors remain the same as with the baseuatian model constructed in
Section 4.3

Prior to doing experiments, we should modify demflied of background traffic.

In this scenario, we assume that the backgrourfictramains at the same level during

evacuation, which is from pm 4:30 to pm 8:30. Thacpdure of constructing the demand

files for background traffic is as follows:

* In the background traffic model, the simulation ¢ins only one hour from 16:30 to
17:30; however, the total evacuation time in thisnsrio is estimated to be over 3
hours, based on pilot experiments For construdtiegevacuation model, we therefore
not only need to add evacuation traffic into thekggound traffic model, but also we
need to extend the total simulation time. For tesearch, we decided to use 4 hours
of the total simulation time, which consists of tweriods: period 1 from 16:30 to
17:30 and period 2 from 17:30 to 20:30. The demdadfor period 1 was kept the
same as the demand file of the background traffic.

* Increase the demand of background traffic for dednaeriod 2 as three times of the
demand of demand period 1. Then model calibratimulsl be made in order to keep
the demand release rates the same for the two depegiods.

The modified release rate for evacuation traffishewn inrigure 39. We can find

the average difference between two periods in tesmelease rates are about 1.28%,

which indicates that our modification is acceptable
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1120 1008 3024 268.8 272.16 1.25%
1241 1117 3351 297.84 301.59 1.26%
799 719 2157 191.76 194.13 1.24%
50 45 135 12 12.15 1.25%

AvgMAPE 1.28%

Figure 39. Modified Release Rate for Demand Periods

» Evacuation Scenario 2- 85% occupancy rate and the same level of backgro
traffic

This scenario is similar with evacuation scenarjcedcept that the occupancy rate is

changed from the current occupancy rate to an 8&€apancy rate. This scenario is to

investigate the effects of occupancy incrementtherentire evacuation. This is the worst

case where both occupancy rate and backgroundctiaffel are the highest in the

project.

» Evacuation Scenario 3 Normal occupancy rate without evacuation and bakup
traffic will be stopped suddenly.

In this situation, we assume that evacuation wél manipulated by the police or

department after a certain time from evacuationirmigg (e.g. 15 minutes in the

project). The background traffic operates norypndllom the beginning of the



evacuation, and is shut down immediately when paddigive and stop all vehicles from

entering into the affected region.

Assumptions:

» The time before police control of the backgrouradfit is 15 minutes.

» The traffic lights are fixed cycling time not a sen light.

» The background traffic is the same during the 1But@s from the beginning of the
evacuation.

« Other factors remain the same as with base evaocuatodel constructed in Section
4.3

» Evacuation Scenario 4 85% occupancy rate evacuation and backgrounddnaffi
be stopped suddenly.
This scenario is similar with evacuation scenariexept that background traffic will be

turned off after 15 minutes.

» Evacuation Scenario 5- Normal occupancy rate with evacuation and gréylua
decreasing background traffic.

In this scenario, we consider the situation thdicpowill guide the operation of traffic

flow entering into the study region and reduce theard traffic gradually to zero,

instead of stopping traffic flow completely. In ghproject, a Possion distribution is

employed to simulate the reduced release rate afgbaund traffic. The corresponding

assumptions include:

» The time before reducing background traffic is 1tutes from the start of the
simulation.

» Background traffic is the same as the base modeiglthe first 15 minutes.



* Other factors remain the same as the base evacumtidel constructed in Section 4.3

The release rate of background traffic in the proig illustrated irFigure 40.
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Figure 40. Reduced Release Rate of Background Traf

» Evacuation Scenario 6- 85% occupancy rate and gradually decreasinggsaukd
traffic.
This scenario is the same as scenario 5, exceptotttaipancy rate is changed from

normal occupancy rate to an 85% occupancy rate.

4.5.2. Scenario Results and Analysis

Considering the nature of randomness of simulattesults, multiple simulation
replications are required, where models are theedameach evacuation scenario except
for the demand files. The overview of the procedui@ building multiple simulation

replications and post-processing simulation resrkspresented in what follows.

1) Generate demand file randomly



According to the pseudo-code described in Secti8rfagt evacuation trip generation, we
generate randomly 30 demand files by using Javgranaming. In each demand file, the

number of vehicles escaping from each parking z®s&chastic.

2) Build multiple simulation replications
With demand files generated above, 30 simulatigiigations are constructed for each

evacuation scenario.

3) Calibrate simulation models

When we build multiple simulation replications wiifferent demand files based on the
original model of each evacuation scenario, itighly possible that some replications
will not run appropriately with the generated denhdife. For example, the model can
run with some demand files, it may however, fairua well with other demand files. In

this case, we have to modify the original modehtzke it run for all demand files.

4) Analyze simulation results

This step focuses on post-processing simulationltsesin the project, we extract the
desired data from the log files of multiple simidatreplication models which are run in
batch using Processor in Paramics. For exampleaweutomatically obtain travel time
data of vehicles from each log file of the simuatreplications and store them into one
file by Java programming, and then analyze the daiag statistics analysis packages

such as JIMP.

In this step of the simulation analysis, the keyaswes of performances include:

» Total evacuation time
The study region has more than 7 parking lots. tbted evacuation time analysis without

considering particular parking lots or parking zaa@é provide us with information such



as mean overall evacuation time, maximum evacudiioe, and cumulative density
function of the number of vehicles evacuated. Basethis, we can estimate the risk of
evacuation faced by shoppers in the commercialghgparea, if the time to evacuate is
given and limited.

« Evacuation time analysis for different parking lot

There are multiple parking lots within the affectesgion as shown imigure 41. The
evacuation time may vary by parking lot, which raaal for local emergency planners.
In the project, we present evacuation time for ssvieey parking lots. The evacuation

time distribution for special parking lots is taatdd in Appendix B1.
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Figure 41. Parking lots Layout



» Evacuation time analysis for different parking rawdVal-Mart

To further explore the details in parking lotsjsStnecessary to obtain evacuation time
patterns for each parking row. In the project, wé/ @onsider the parking rows in Wal-
Mart. Based on the design of parking lot layoutl-Mart, there are three parking
rows: parking row 1 is the closet to the entranteMal-Mart, parking row 3 is the
farthest to the entrance, and parking row 2 ishie middle. For each parking row,
evacuation time may be different.

» Evacuation time distribution across different destiions

This measure is to calculate the time taken forehicle to arrive to a safe zone. It
therefore can indicate which safe zone is the b@sta vehicle to escape to, given a
limited evacuation time.
» Total arrival time

Arrival time is different from evacuation time.i#t the time at which a vehicle arrives at a
safe zone. Based on the CDF plot of the total alrtivne distribution, we can estimate
what percentage of evacuees is able to successfdigpe to safe zones given a certain
time period.

» Traffic bottleneck location analysis

Evacuation always occurs along with massive moveésnehresources and people. It is
inevitable that traffic congestion happen. Therefothe identification of traffic

bottlenecks is an important aspect in the emergplasning.

The details of simulation results analysis for eacacuation scenario are summarized in

the following subsections.



Evacuation Scenario 1

1) Total evacuation time analysis

Based orrFigure 42, the mean evacuation time is 15.996 minutes widximum 134.73
minutes across all parking lots. In addition, wen Gdso summarize the cumulative
density function for the evacuation time. For ins& 90% of evacuees have evacuated

from parking lots after 100 minutes from beginnaighe evacuation.

Evacuation Time Distribution  Quantiles Moments CDF Plot
100.0% | maximum | 134.73 | | Mean 15.995965 —
(T e—:. 99.5% 103.41 | [ Std Dev 19.608451 ol
- ! 97.5% 7508 || StdErr 0.0647084 071
r020Z 90.0% 41.00 || Mean £ 08
o108 | [750% | quartie | 2173 |[Upper%% | 16.122793 | | &°°] /
roose 50.0% | median | 8.47 Mean ©oadl
0/102030405060708080 110 130 25.0% | quartile | 2.62 Lower 95% | 15.869137 027
10.0% 1.28 Mean o
2.5% 0.72 N 91826 0 2 4 60 80 100 120 140
050/0 052 EvacuationTime
0.0% minimum | 0.23

Figure 42. Total Evacuation Time Analysis in Scenao 1

2) Total evacuation time distribution for differentrhimg lots

The average evacuation time for the key parking iotthe study region is illustrated in
Figure 43. Malco Cinema shown iRigure 41 has the largest evacuation time of about 34
minutes. The parking lots in Northwest Arkansas|Male almost the same evacuation

time of about 10 minutes.
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Figure 43. Time to Evacuate Each Parking lot in Sgwrio 1

3) Evacuation time distribution for different parkingws in Wal-Mart

Based on theable 6, the average evacuation time of parking row 33234 and is the
maximum among the three parking rows, which seemmsasonable since the parking
row 3 is the closet to exits of parking lots. Afidoser examination of the evacuation
distribution of the parking row 3, we can find thatly few vehicles evacuated from
parking row 3. Thus, it is possible that averagacemtion time for parking row 3 can be
higher than ones in parking row 1 and parking rowR.sum, there is no obvious
difference of evacuation time across parking rawsignoring the effects of evacuation

time from the parking row 3.
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Table 6. Average Evacuation Time for Each Parking Bw in Scenario 1

Parking Row # Avg EvaTime Max EvaTime Min EvaTime

124.52

Parking row 1 17.9688821
Parking row 2 17.044655 123.42 0.5

Parking row 3 33.274 53.68 19.45

4) Evacuation time distributions across different ofegions
According to the Figure 44, the minimum evacuatiime is 8.178 minutes with
destination 372 shown igure 29. This indicates that it took the least amountiwiet on

average to evacuate to destination 372.
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Figure 44. Average Evacuation Times Comparison aces Different Destinations in Scenario 1
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5) Total Arrival Time Distribution

The arrival time distribution is shown mure 45. Based on the figure, we can estimate
that the percentage of evacuees who are able apesc safe zones within a time period.
For example, about 50% of evacuees can escapdetamaes after 40 minutes from the

beginning of the evacuation.

Evacuation Time Distribution ~ Quantiles Moments CDF Plot

100.0% | maximum | 149.77 || Mean 38.685183 p——
99.5% 130.40 | | Std Dev 23916847 g1
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%21 [90.0% 68.22 | | Mean £ 081
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Figure 45. Total Arrival Time Distribution in Scenario 1

6) The traffic bottlenecks over all links within th8exted region

By observing the animation of simulation runs, vea adentify the key locations where
traffic congestion occurs. For example, the sitratf traffic congestion in the study
region at time 16:50 is shown myure 46. The bigger that the yellow circle is, the more
vehicles are congested. Among the traffic bottlésesf A, B, C, and D, locations A and
D are the most important for evacuation traffic.eTtetail analysis for evacuation

scenario 1 is tabulated in Appendix B1.
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Figure 46. Traffic Bottlenecks in Study Region in 8enario 1
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Evacuation Scenario 2

1) Total evacuation time analysis
Based onrigure 47, the mean evacuation time is about 55.35 minutiéls maximum
220.40 minutes across the parking lots. It is obwithat the average evacuation time is
bigger than one obtained in scenario 1, becaus@rigability of traffic congestion is

increased due to the increased occupancy rate (85%)

Evacuation Time Distribution  Quantiles Moments CDF Plot
B 100.0% | maximum | 22040 | [ Mean 55354346
SR 99.5% 167.01 Std Dev 43535823 :;:
Fo3| [T 14043 | [SWET TS 2295 i
f = 90.0% 116.93 | | Mean 8 0o
TR NW W W W 2N 75.0% | quartile 90.45 | | Upper 95% | 55.540984 E o]
50.0% | median 4865 | [ Mean &

25.0% | guartile 14.70 | | Lower 85% | 55167709

10.0% 3.00 | [ Mean 01
25% TO3 || N 209024 u o w oW >
0.5% 062 Ewostmnlem

0.0% minimum 0.23

Figure 47. Total Evacuation Time Analysis in Scenao 2

2) Total evacuation time distribution for differentrkiag lots
The average evacuation time for the key parking iotthe study region is illustrated in
Figure 48. The maximum of evacuation times occur among Cgz&iMalco Cinema,
Northwest Arkansas Mall 3, and Northwest Arkansaadl N shown inrigure 41, where

traffic congestion happens frequently.
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Figure 48. Time to Evacuate Each Parking lot in Sg®rio 2

3) Evacuation time distribution for different parkingws in Wal-Mart
Based omrable 7, the average evacuation time for three parkingsrmsalmost the same at

about 46 minutes on average.

Table 7. Average Evacuation Time for Each Parking Bw in Scenario 2

Parking Row # Avg EvaTime Max EvaTime | Min EvaTime

Parking row 1
Parking row 2

Parking row 3
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4) Evacuation time distributions across different ohedions
According to Figure 49 and, the minimum evacuation time is 47.65 minugth
destination 372. This indicates that the destima8@2 has the lowest time for vehicles
that select it as their destination. The safe zmreesponding to the maximal evacuation

time of 62.06 minutes is zone 376 showigigare 29.
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Figure 49. Average Evacuation Times Comparison acss Different Destinations in Scenario 2

5) Total Arrival Time Distribution

The arrival time distribution is shown mgure 50. Based on the figure, about 50% of

evacuees arrive to a safe zone within 75 minutéseobeginning of an evacuation.
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Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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Figure 50. Total Arrival Time Distribution in Scenario 2

6) The Traffic bottlenecks over all links within theffected region

In this scenario, there are many traffic bottlersedkring evacuation as shownFigure

51. Most of traffic gridlock happens at the exitsinecting the main roads inside of the
parking lots. For example, the traffic situation1&t50 is illustrated irFigure 51, where
major congestion occurs at road A, road B, roach@raad D. The traffic congestion at
the road A is the most important for reducing enéwvacuation traffic, because it causes
serious traffic congestion at the intersection o€bdllege Ave and E Joyce Blvd, which
in turn causes the traffic congestion at othertiooa. The detail analysis for evacuation

scenario 2 is tabulated in Appendix B2.
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Figure 51. Traffic Bottlenecks in Study Region in 8enario 2
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Evacuation Scenario 3

1) Total evacuation time analysis
Based onrigure 52, the mean evacuation time is 7.746 minutes withximam 63.42
minutes across the parking lots. Fifty percent lué evacuees have evacuated from

parking lots after 5 minutes from the beginnindhe evacuation.

Evacuation Time Distribution  Quantiles Momenis CDF Plot
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Figure 52. Total Evacuation Time Analysis in Scenao 3

2) Total evacuation time distribution for differentrhimg lots
The average evacuation time for the key parking iotthe study region is illustrated in
Figure 53. The maximum evacuation time occurs among Louei & Bar, Malco

Cinema, and War-Mart, which is shownrigure 41.
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Figure 53. Time to Evacuate Each Parking lot in Sg®rio 3

3) Evacuation time distribution for different parkingws in Wal-Mart
Based on therable 8, the maximum of the average evacuation time antbegthree
parking rows is 18.33 minutes in parking row 3.sTimdicates that vehicles generated in

parking row 3 wait longer on average to evacuate.

Table 8. Average Evacuation Time for Each Parking Bw in Scenario 3

Parking Row # Avg EvaTime Max EvaTime Min EvaTime
Parking row 1  ENKoArge] 55.58 0.48

Parking row 2 ENKORGRS] 40.37 0.48
ECEUICHCNECEN 18.33 28.78 9.23

4) Evacuation time distributions across different ofegions
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According to the Figure 54, the minimum evacuatiore is 3.9 minutes with destination
371. This indicates the destination 371 has thekgst time to evacuation. The worst

safe zone corresponding to maximal evacuation ¢ifri®.2 minutes is zone 377 shown

in Figure 29.
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Figure 54. Average Evacuation Times Comparison aces Different Destinations in Scenario 3
5) Total Arrival Time Distribution

The arrival time distribution is shown #yure 55. Based on the figure, about 50% of the

evacuees can arrive to a safe zone after 30 minutes
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Figure 55. Total Arrival Time Distribution in Scenario 3

6) The Traffic bottlenecks over all links within th#exted region

The key location where traffic congestion occurdimie 16:50 is shown imfigure 56,

where traffic is primarily congested at main evdmm routes. Overall there is less
congestion in this scenario. The roads A and Ctlaeekey roads for reducing overall
traffic congestion, because the traffic gridlock these two roads leads to traffic
congestion at the intersection of N College Ave &ndoyce Blvd, which in turn cause

the traffic congestion at other locations.
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Figure 56. Traffic Bottlenecks in Study Region in 8enario 3
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Evacuation Scenario 4

1) Total evacuation time analysis
Based orrFigure 57, the mean evacuation time is 28.664 minutes widkximum 104.45
minutes across all parking lots. In addition, 50%ewacuees have evacuated from

parking lots after 26 minutes.

Evacuation Time Distribution Quantiles Moments CDF Plot
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Figure 57. Total Evacuation Time Analysis in Scenao 4

2) Total evacuation time distribution for differentrhimg lots
The average evacuation time for the key parking iotthe study region is illustrated in
Figure 58. The maximum of evacuation time occurs among Gelll & Bar and Malco

Cinema shown iigure 41.
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Figure 58. Time to Evacuate Each Parking lot in Sg®rio 4

3) Evacuation time distribution for different parkingws in Wal-Mart
Based on thaable 9, the average evacuation time for three parkingsraavalmost the

same at about 31 minutes on average.

Table 9. Average Evacuation Time for Each Parking Bw in Scenario 4

Parking Row # Avg EvaTime Max EvaTime Min EvaTime
GEUICHCNEN 31.47 77.45

EUSQONEOTAN 30.81 79.48 0.45
EUSUONOECEN 30.55 74.97 0.37

4) Evacuation time distributions across different ofegitons



According to therigure 59, the minimum evacuation time is 24.80 minutes with

destination 371 shown mgure 29.
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Figure 59. Average Evacuation Times Comparison aces Different Destinations in Scenario 4

5) Total Arrival Time Distribution

The arrival time distribution is shown mgure 60. Based on the figure, about 50% of

evacuees could escape to safe zones after 51 minute

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
100.0% | maximum | 11967 | [ Mean 51.395283
o 99.5% 10560 | | Std Dev 25015691 :;_
= 3| [375% 5583 | [SWEr [ UUSAT315 o)
90.0% 8517 | | Mean B oe-
TANIHANBAW D 75.0% | quartile 71.60 | | Upper 95% | 51.502555 E vl
50.0% | median 5112 | | Mean el
25.0% | guartile 3100 | [ Lower 95% | 51.28801 02+
10.0% 16.57 | | Mean aty
2.5% 9.82 N 208908 0w J'J JOUYEAUERNW w
0.5% 713 ATom
U.0% minimum 9.37

Figure 60. Total Arrival Time Distribution in Scenario 4
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6) The Traffic bottlenecks over all links within affed region

By observing the animation of simulation runs, ve@ @dentify the key locations where
traffic congestion occurs as shownrigure 61. The bigger the yellow circle, the more
traffic congestion occurs. For example, there ateg major traffic bottlenecks: A, B, C,

and D, in which traffic congestion on roads A andafeé the most important and they

cause the most of congestion in the study region.

Figure 61. Traffic Bottlenecks in Study Region in Senario 4
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Evacuation Scenario 5

1) Total evacuation time analysis
Based orFigure 62, the mean evacuation time is 10 minutes with maxin®5.82 minutes

across all parking lots. 50% of evacuees have @tadufrom parking lots after 7

minutes.
Evacuation Time Distribution Quantiles Momenis CDF Plot
100.0% | maximum | 55.820 Mean 10.020729
1) — 995% 40880 | [StdDev 95737401 | -
e 97 .5% 34.470 Std Err 0.0315803 ard
Mo m% 90.0% i 24 930 Mean g a8
oo 75.0% | quartie | 14.830 | [Upper 95% | 10082645 g
Lo 50.0% | median 6.650 | | Mean “ s
0 10 2 2 & 2 250% | quartile 2.420 Lower 95% | 9.9588118 0z
10.0% 1.270 Mean e
25% oyoo | [N 91845 T 0 ™ » e @ m
0.5% 0.520 e
0.0% minimum 0.250

Figure 62. Total Evacuation Time Analysis in Scenao 5

2) Total evacuation time distribution for differentrpig lots
The average evacuation time for the key parking iotthe study region is illustrated in
Figure 63. The maximum of evacuation times occurs among 1soGeill & Bar and Malco

Cinema shown iigure 41
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Figure 63. Time to Evacuate Each Parking lot in Se®rio 5 in Scenario 5

3) Evacuation time distribution for different parkingws in Wal-Mart
Based on theable 10, the average evacuation time of the parking rae/137.98 and is the

maximum among the three parking rows.

Table 10. Average Evacuation Time for Each ParkindRow in Scenario 5

Parking Row # Avg EvaTime Max EvaTime Min EvaTime
FECCNCAT 12.63 52.33

Parking row 2 EMpNK] 54.07 0.50
EUSUONOACHN 17.98 35.67 3.15

4) Evacuation time distributions across different oiedions
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According torigure 64, the minimum evacuation time is 5.64 minutes wiéistination 372

shown inFigure 29.
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Figure 64. Average Evacuation Times Comparison aces Different Destinations in Scenario 5

5) Total Arrival Time Distribution

The arrival time distribution is shown mgure 65. Based on the figure, about 50% of

evacuees can escape to safe zones after 32 minutes.

Evacuation Time Distribution ~ Quantiles Momenis CDF Plot

100.0% | maximum | 72.350 | [ Mean 32681152
99.5% 64.880 | [SidDev 14725038 pod

N 97.5% 60.500 | [SIdErr 0.0470217 0t

ome = 90.0% 52.300 | [ Mean g 04

(008 75.0% | quartle | 43.000 | [ Upper 95% | 32773314 [

Fs 50.0% [ median 32.880 | | Mean © asd

1020 0 @ % 6 10 25.0% | guartile 20.450 | | Lowver 95% 3258899 024

10.0% 14.050 | [ Mean
2 .5% g .230_ N 91 845 0 ‘:l X I'J - 5'! LY n':J L]
0.5% 1.020 e
U.0% minimum 9.300

Figure 65. Total Arrival Time Distribution in Scenario 5
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6) The Traffic bottlenecks over all links within theffected region

The key locations where traffic congestion occurs shown inrigure 66. The major
congestion events happen on the roads around Wil-W&e congestion at location A is

the most important, because it causes the tradfigestion at locations B and D.

Figure 66. Traffic Bottlenecks in Study Region in 8enario 5



Evacuation Scenario 6

1) Total evacuation time analysis

120

Based orrigure 67, the mean evacuation time is 31.88 minutes withaximum 97.02

minutes across all parking lots. Fifty percent vh@iees have evacuated from parking

lots after 31minutes.

Evacuation Time Distribution Quantiles Momenis CDF Plot

R 100.0% | maximum | 97.020 | [ Mean 31.8580702

o = 93.5% 54,600 | [StdDev 22415596 d

ELl| [975% 75550 | [ ST T 0490833 o]

e 90.0% 63.230 Mean 8 o

ThAnenE N 750% | quartle | 49.380 | [ Upper 95% | 31.976905 [

50.0% | median 30.630 | | Mean © asd
25.0% | quartile 11170 | | Lower 95% 31.7845 02
10.0% 2780 | | Mean 1
25% TO00 | | N 208617 USRS S SN S
0.5% 0.600 e
0.0% minimum 0.230

Figure 67. Total Evacuation Time Analysis in Scenao 6

2) Total evacuation time distribution for differentrpig lots

The average evacuation time for the key parking iotthe study region is illustrated in

Figure 68. The maximum of evacuation times occur among lo@&ill & Bar and

Northwest Arkansas Mall 4 shown gryure 41.
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Figure 68. Time to Evacuate Each Parking lot in Se®rio 5 in Scenario 6

3) Evacuation time distribution for different parkingws in Wal-Mart
Based orrable 11, the average evacuation time of parking row 33sr8nutes, and there

is no obvious time difference among three parkowgs.

Table 11. Average Evacuation Time for Each ParkingRow in Scenario 6

Parking Row # Avg EvaTime Max EvaTime Min EvaTime

Parking row 1

Parking row 2
Parking row 3

4) Evacuation time distributions across different ofegions
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According torigure 69, the minimum evacuation time is 27.8 minutes festahation 371.
The worst safe zone is 376 with maximal evacudiioe of 34.59. The zones are shown

in Figure 29.
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Figure 69. Average Evacuation Times Comparison acss Different Destinations in Scenario 6




5) Total Arrival Time Distribution

evacuees can escape to safe zones after 55 minutes.
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The arrival time distribution is shown mgure 70. Based on the figure, about 50% of

Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 116.88 | [ Mean 54 566304
99.5% 107 .95 | [ StdDev 26.407805
97 5% 100.28 | | StdErr 00578173
90.0% 89.83 | [ Mean
EEEELREEE) 75.0% | quartile 7595 | [ Upper 95% | 54679625
50.0% | median 55.35 | | Mean
250% | quartile 33.70 | | Lowver 95% | 54.452984
10.0% 1642 | | Mean
2.5% 9380 | [N 208617 DNODW ML DW
0.5% 112 AT
0.0% minimum 547

6) The Traffic bottlenecks over all links at affectedjion

Figure 70. Total Arrival Time Distribution in Scenario 6

The key location where traffic congestion occurdimie 16:50 is shown imigure 71,
where the major congestion location are A, B, C @Bnd@he congestions at roads A and B
are the most important. The congestion at locafiogs caused by traffic congestion at N

College Ave, which can be relieved if traffic frofnand B to N College Ave is reduced.
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Figure 71. Traffic Bottlenecks in Study Region in 8enario 6
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4.5.3. Overall Analysis and Conclusions
Based on the individual evacuation model scenasults in Section 4.5.2, this section
primarily focuses on the simulation results acrdgterent scenarios. The details are

addressed as follows.

1) Total evacuation time analysis
Evacuation time is prone to numerous factors andaries by different evacuation

scenarios. The general evacuation time analysig@doh model scenario is tabulated in

Table 12.
Table 12. Evacuation Time analysis across Model Starios

Scenario Scenario Scenario Scenario Scenario  Scenario

1 2 3 4 5 6
Average Evacuation 16.00 55.35 7.75 28.66 10.02 31.88
Time
Maximal Evacuation 134.73 220.40 63.42 104.45 55.82 97.02
Time
Minimal Evacuation 0.23 0.23 0.25 0.23 0.25 0.23
Time

According to the table, we can summarize the folhgs results:

* The evacuation time of model scenarios with 85%upaacy rate is greater than
model scenarios with normal occupancy rates. Becdlis former involves much
more movement of resources and easily causes mocé traffic congestion in the
study region. For example, it takes about 55 mmteevacuate the whole study area
in scenario 2; however, it only takes about 16 @aun scenario 1.

» For each occupancy rate, evacuation time is thdleshan the model with stopped
background traffic, and the greatest in the modéh whe background traffic of the
same level. The evacuation time in the model withdgally reduced background
traffic is in the middle. Because of less backguraffic during evacuation, less

interaction occurs between evacuation traffic aackiground traffic. For example, the
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evacuation time gets higher for scenario 2, scen@riand scenario 4, where the
occupancy rates are 85%.

* The minimal evacuation time is about 0.23 minutess not possible in reality for a
driver to escape to safe zones in this of shoré. tiAfter scrutinizing, the simulation
animation and model results, we find that this easion time only exists for vehicles
generated both in the parking lots close to safeegoand at the beginning of the
evacuation when the evacuation traffic is not toacm and background traffic
congestion is low. Another reason also could erpthis short evacuation time. In
our model, we do not consider the process of dsivealking out of a building to get
their cars in parking lots. In addition, in Paraspigehicles are generated within zones.
When a vehicle is released from a zone, its speddei same as the link of the zone.
Therefore the beginning speed of vehicles is higleiermined by the link speed limit.
In our model, we assume that the speed is 10 milés/ parking lot roads. Therefore,
the vehicle's speed in parking lots is about 1@#nilat the beginning which is higher
than in reality. Based on these factors, it is fdsswithin the model that an

evacuation time can be less than 1 minute.

2) Evacuation time distribution for different parkitay

For different parking lots, the evacuation timed the same. As shown in Figure 72, the
maximal evacuation time occurs generally in modehsario 2, due to the fact that there
are more vehicles participating in the evacuatlmantin the other scenarios. For each
model scenario, the largest evacuation time gdgewdcurs for the parking lots:
CCPizza, Loue's-Grill&Bar, Malco-Cinema, and Nor#st/Arkansas Mall, because there

are more people in these areas especially on tekemds.
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Parking Lot Name

Scenario 1 Scenario 2 Scenario 3 Sceimm4

Scenario 5 Scenario 6

Maximal ETime

Best-Buy 15.84 34.60 6.00 18.37 7.82 17.77 34.60
CCPizza 15.91 76.17 8.82 39.59 10.70 22.15 76.17
Loue's-Grill&Bar 30.65 50.97 14.20 22.27 17.81 42.97 50.97
LOWE'S 4.49 19.19 2.61 6.64 3.78 28.18 28.18
Malco-Cinema 33.97 72.48 12.91 23.88 18.02 9.83 72.48
Northwest-Arkansas-Mall 1 9.97 68.89 5.30 33.92 7.11 29.6 |68.89
Northwest-Arkansas-Mall 2 9.96 54.03 5.32 27.81 7.23 B7.9 54.03
Northwest-Arkansas-Mall 8 10.55 75.70 6.74 46.70 7.61 30.50 75.70
Northwest-Arkansas-Mall 4 12.04 65.88 7.85 40.14 9.02 49.20 65.88
Northwest-Arkansas-Mall 5 9.51 60.29 5.93 38.08 6.85 813.4 [60.29
Northwest-Arkansas-Mall § 9.59 47.04 6.32 33.39 7.64 89.5 47.04
Northwest-Arkansas-Mall  10.13 24.51 4.57 15.49 6.19 0GB5. 35.00
Northwest-Arkansas-Mall 8 11.52 71.72 5.11 30.49 7.40 727. 71.72
Wal-Mart 17.73 46.03 10.72 31.00 12.63 33.81 46.03
Maximal ETime 33.97 76.17 14.20 46.70 18.02 49.20

Figure 72. Evacuation Time of Parking lots across®narios

3) Evacuation time distribution for parking rows

For each parking row within a parking lot for WabM, the average evacuation time is

illustrated in Table 13. As discussed in the reanhlysis of individual evacuation model

scenarios in Section 4.5.2, generally there ismath difference for the evacuation time

for these parking rows, which may not be reasoniabieality. However, it is explainable

in the project. In our simulation model, we mode parking lot in a simplified method,

not considering the behaviors of pedestrians ahethes in more detail. For example, we

consider the procedure that drivers get in their dave out parking lots and escape to

safe zones, however we ignore the process of hoxerdrget out of buildings and find

their cars in parking lots, which can affect evdammtime greatly. Without considering

the detailed movements in parking lots, the evaonaime for different parking rows

may not be very different. This suggests that tagittd modeling of the movements

within parking lots during an evacuation is an impot area for future research. We are

unaware of any commercial off the shelf traffic ratiwlg programs that can effectively

model this situation.
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Table 13. Average Evacuation Time for Parking rowsicross Scenarios

Parking row #

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Parking row 1
Parking row 2
Parking row 3

17.9i 46.81 10.7¢ 31.45 12.6: 33.52
17.0¢ 45.4( 10.4¢ 30.81 12.6: 32.4¢
33.2i 45.62 18.3¢ 30.5¢ 17.9¢ 33.7¢

4) Evacuation time distributions for different destinas

The average evacuation time for each destinatiodifferent scenarios is provided in

Table 14 Based on the table, we can find that 371 and &8@é2the best safe zones for

evacuees, which require the least evacuation thkoeording to the map of study region

and simulation runs, we find that 371 and 372 areamly closer to shopping areas but

also suffer from lower traffic congestion.

Table 14. Average Evacuation Time for Destinationacross Scenarios

Destination # Scenariol Scenario 2 Scenario3 Scenario 4 Scenario5 Scenario 6
371 9.00 48.39 3.90 24.80 5.70 27.80
372 8.18 47.65 3.95 25.13 5.64 28.08
373 15.41 54.12 7.31 27.84 9.48 31.18
374 19.94 59.28 9.09 30.25 11.89 33.57
376 20.49 62.06 9.85 31.08 12.82 34.59
377 19.58 56.92 10.20 30.70 12.47 33.87
378 19.32 59.09 9.92 30.75 12.25 34.15
Minimal ETime 8.18 47.65 3.90 24.80 5.64 27.80
Maximal Etime 20.49 62.06 10.20 31.08 12.82 34.59
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5. Summary

In this exploratory research, we have addressedg#reral procedure of modeling
evacuation in a large shopping district from maagkhssumptions to model construction,
model scenario development, and experiments. Wee rawccessfully applied the
modeling methodologies to a case study in the regimund the Northwest Arkansas
Mall at Fayetteville, AR; however, we have encoustemany challenges concerning

modeling issues and there are still several arpas tor future studies.

5.1. Lessons Learned

Compared with current traffic simulation packagearamics is one of the most cutting
edge micro-simulation software programs in the dioth our research, we therefore
selected Paramics for our evacuation modeling. Hewelots of modeling issues
occurred during the modeling process:

1) Current of traffic simulation packages have inadgtgumodeling capabilities for

serious evacuation studies, which includes:

* The packages cannot easily incorporate stochastilelimg and experimentation. Trip
demand files and profiles files in our researchncairbe generated by the simulator,
we have to generate and import these files frorargthckages.

* The packages cannot model the detailed dynamickinwé parking lot. Micro-
simulators cannot model such details as the indaligharking space; therefore, we
have to use a simplified method by aggregating ipgrkpaces into parking zones,
ignoring the details inside parking zones.

» The pedestrian modeling tools are in their infan@ne of the modeling issues for the
evacuation in shopping areas is to model the iotiera between vehicles and

pedestrians in the parking lots. We desire to rhtue panic-stricken situation that
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shoppers escape from buildings, drive their catslaave parking lots to safe zones.
In our research, we cannot model the process thd¢gtrians desperately walking
around to find their cars and leave with their caisce pedestrians are only allowed

to travel on predefined route in many micro-simolafpackages.

2) Data collection is a serious challenge

Micro-simulators require detailed data in the stuelyion; therefore much effort has to be
made in acquiring data. For example, consider tudysregion. Much time was spent on
data collection including: counting parking lot apancy, road volumes, network
structure, road control, parking lot structure, deoh patterns, parking lot patterns,

evacuation initiation, etc.

3) Model Calibration
This is a serious challenge and a well establigiredlem with the use of microscopic

simulation. Not only does it take significant tineecalibrate a single evacuation model,
but in realistic modeling must calibrate multiplevaeuation models during
experimentation. At present, trial and error isrigor method use for model calibration,

which is not an acceptable long term approach.

4) Simulation Result Analysis

Although analysis tools are available in the misinmulation packages to facilitate
simulation results analysis, many packages requast-processing of extensive data sets.
In some instances custom programming iS necessaagdess the desires statistics of
evacuation studies. For example, we estimate theuation risk as a function of time by
using outside statistic packages. These statiatiesnot readily available within many

commercial off the shelf software packages. In @search, the Paramics Analyser of
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Paramics was unable to extract our desired dataltsesuch as traffic bottleneck

locations, because of the necessity of having nzangs represent parking locations.

5.2. Future Study

The models developed in this project are only tbegiitming of the research in these
areas, and there are several interesting areasdhbdtstudy further.

1) Evacuation Strategies

In the model scenario development, we only consider factors: occupancy rate of a
parking lot and background traffic level. In fasthnumber of other factors can affect the
effectiveness of evacuation such as traffic openatiresponse rate, evacuation sequence,
etc. For example, evacuation time may be muchréfffieif a staged evacuation policy is

used, rather than simultaneous evacuation.

2) Parking Lot Modeling
As discussed in previous sections, the modelingaoking lots is crucial to the overall

evacuation of shopping areas. It not only incluakesieling the individual parking spaces
as trip generation locations, but also modelingittieraction between pedestrians and
vehicles in parking lots at the beginning of ancesdion. This is a deficiency in many
simulation packages. The more details we modelimviplarking lots, the more accurate

result we will obtain.

3) Pedestrian Modeling

Under evacuation, pedestrians may distribute in dfiected regions not only in the
parking lots but also on the evacuation routes. frletion between pedestrians and
evacuation traffic is inevitable. Therefore the mloty of pedestrians is also an

important aspect in evacuation modeling. For examph order to simulate the
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movement of pedestrians, we need to determineistiébdition of pedestrians at different
time of the day, movement mode (e.g. walking omiag), and their route choice under

an evacuation situation.
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Appendices:
A. Traffic Signals Planning

e == == == == =S

Phase 1 Phase 2 phase 3 Phase 4 Phase §

R G Y | R G Y|  R|G|Y|R G Y| R|G|Y
345 | 455 (387242 | 1954 (427 | 145|541 (441 | 82 | 1152 442 | 00| 7.41 | 4.35

3.37 | 35.57 | 4.19 | 2.54 | 19.48 | 439 862 | 45 | 475| 1531 | 457 | 0.0 | 6.12 | 443
292 | 45.07 | 445 19.39 | 4.52 835|453 (232 931 | 453 (0.0 6.29 | 3.45
40 | 437 564 | 44 | 6.05( 1524 | 455 | 0.0

Average | 3 42 4 2 19 4 1 7 4 5 13 5 10| 7 4

Figure 73. Mall North on N College Ave(1)

Phase 1 Phase 2 phase 3 Phase 4 Phase §

1.67 | 442 | 432|144 | 1664 | 438 | 231 | 932 | 226 | 2.16 | 5.88 | 3.92| 3.01 | 5.16 | 431
1.88 | 61.28 | 442 | 1.57 | 17.75 | 4.15 | 2.17 | 742 | 4.09 | 197 | 993 | 435| 244 | 428 | 43
191 | 5288 | 435|149 | 1727 | 436 | 2.29| 8.07 | 1.83 | 2.07 | 20.5 | 445| 2.18 | 19.08 ( 5

2.03 | 61.71 | 452 | 1.53 | 17.55 | 4.39 | 2.98 | 10.08 | 1.77 | 2.28 | 19.55 | 4.47 | 2.39 | 12.45 | 4.25
1.77 | 60.05 | 4.33 | 1.51 | 17.38 | 4.44 2.11 | 2041 | 4.19 | 2.51
1.83 ( 49.15 | 4.13 | 1.49 | 1747 | 4.42 1.87 | 16.58 | 4.53
Average | 2 55 4 2 17 4 2 9 2 2 15 4 3 10 4

Figure 74. Mall South on College Ave (2)
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N I | | L L
wo—I—o}j > - - = —— - ——| | c—
: | | [ |
Phase 1 Phase 2 phase 3 Phase 4 Phase §
R G|Y R| G Y G Y R| G Y R| G Y
14 6.1 4 1 129 | 34 1847|366 | 1 | 84 | 25 | 0 | 9.66 | 3.37
146 | 558|337 | 1 | 1323 | 33 167 | 403 |1 |774| 33 | 0| 105 | 38
14 76 | 3.2 1 168 | 33 1|86 |345|0
1.5 34 1795|1405 | 1 (815 33 | 0
181 | 39 (1 | 84
Average 1 6 3 1 13 3 18 4 1 8 3 0 10 4
Figure 75. Ejoyce&&North Mall Ave (4)
. Il I I L L
E - f = / e - — _v.- —310h
" u | i |
Phase 1 Phase 2 phase 3 Phase 4 Phase §
R G|Y R| G Y G Y R| G Y R| G Y
14 6.1 B 1 129 | 34 1847|366 | 1 | 84 |25 | 0 | 9.66 | 3.37
146 | 558 | 337 | 1 | 1323 | 33 167 | 403 |1 |(774| 33 | 0| 105 | 38
14 | 76 | 32 |1 168 | 33 1|86 |345|0
1.5 34 1795|1405 | 1 [ 815| 33 | 0
18.1 39 1| 84
Average 1 6 3 1 13 3 18 4 1 8 3 0 10 4

Figure 76. West to the Wal-Mart (5)
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B1l. Simulation Results from Evacuation Scenarios 1

1) Total evacuation time distribution for different parking lot

» Distributions ParkingLotName=Best-Buy

Evacuation Time Distribution Quantiles Momenis CDF Plot
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10.0% 113 | | Mean -5
2.5% 075 | [N 6386 6 ™ oW om o®m oW W™
0.5% 0.58 Se———
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» Distributions ParkingLotName=CCPizza

Evacuation Time Distribution  Quantiles Momenis CDF Plot
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» Distributions ParkingLotName=Loue's-Grill&Bar

Evacuation Time Distribution = Quantiles Mome nts CDF Plot
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C gt 335% 1872 | [StdDev__| 26.861163 o
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Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 120.27 | [ Mean 4 45346
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» Distributions ParkingLotName=Malco-Cinema
Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 132.27 | [ Mean 33.972926
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» Distributions ParkingLotName=Northwest-Arkansas-Mall
Evacuation Time Distribution ~ Quantiles Momenis CDF Plot
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2) Evacuation time distribution for different parking rows in Wal-Mart

» Distributions ParkingRow#=parking row 1

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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» Distributions ParkingRow#=parking row 2

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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» Distributions ParkingRow#=parking row 3

Evacuation Time Distribution ~ Quantiles Momenis CDF Plot
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3) Evacuation time distributions across different deghation

> Distributions Destination=371

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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> Distributions Destination=372

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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> Distributions Destination=373

Evacuation Time Distribution  Quantiles Moments CDF Plot
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> Distributions Destination=374

Evacuation Time Distribution  Quantiles Moments CDF Plot
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> Distributions Destination=376

Evacuation Time Distribution  Quantiles Momenis CDF Plot
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> Distributions Destination=377

Evacuation Time Distribution = Quantiles Mome nts CDF Plot
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> Distributions Destination=378
Evacuation Time Distribution =~ Quantiles Moments CDF Plot
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B2. Simulation Results from Evacuation Scenarios 2

1) Total evacuation time distribution for different parking lot

» Distributions ParkingLotName=Best-Buy

Evacuation Time Distribution  Quantiles Momenis CDF Plot
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» Distributions ParkingLotName=CCPizza

Evacuation Time Distribution  Quantiles Monme nis CDF Plot
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» Distributions ParkingLotName=Loue's-Grill&Bar

Evacuation Time Distribution  Quantiles Moments CDF Plot
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» Distributions ParkingLotName=LOWE'S

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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» Distributions ParkingLotName=Malco-Cinema

Evacuation Time Distribution  Quantiles Moments CDF Plot
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» Distributions ParkingLotName=Northwest-Arkansas-Mall 1

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
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» Distributions ParkingLotName=Northwest-Arkansas-Mall 2

Evacuation Time Distribution  Quantiles Momenis CDF Plot
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» Distributions ParkingLotName=Northwest-Arkansas-Mall 3

Evacuation Time Distribution ~ Quantiles Momenis CDF Plot
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» Distributions ParkingLotName=Northwest-Arkansas-Mall 4

Evacuation Time Distribution  Quantiles Moments CDF Plot
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» Distributions ParkingLotName=Northwest-Arkansas-Mall 5

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
100.0% | maximum | 14217 | [ Mean 60.287632
i O e 335% 73546 | [StdDev_ | 3943635 bl
L 97 5% 12810 | [ SIdErr 11172167 urd
FO.152 90.0% 114.49 | | Mean 8 on
Fo.0d 75.0% | quartie 9214 | [Upper 95% | 62.479468 5
pol 500% | median 62.78 | [ Mean S
01020 «0S0E70 ' S0 ' 110 130 150 250% | quartile 2796 | | Lowver 95% | 58.095797 02
10.0% 406 | [ Mean 7
2.5% 1 .75 N 1248 0 ;J I'X 'l'} LY 'llll > ';1 -
05% 122 Srensturiem
00% | minimum T03

» Distributions ParkingLotName=Northwest-Arkansas-Mall 6

Evacuation Time Distribution ~ Quantiles Momenis CDF Plot
100.0% | maximum | 166.13 | [ Mean 47 0433836
1 - 33.5% 12642 | [StdDev 37556 el
- 97 5% 11368 | | SIdErr 02236618 urd
e | [900% 3455 | | Mean g 0n1
:omg 75.0% | quartile 7105 | | Upper 95% | 47.482369 E ol
L = 50.0% | median 44 42 | | Mean ® asd
010 30 50 70 90 10130 180 110 25.0% | quartile 17.20 | [ Lower 95% | 46.605504 )
10.0% 443 | | Mean ey
2.5% T77 || N 21938 o M o
0.5% 1.20 e~
00% | minimum 062
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Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 134.93 | [ Mean 24505515
Aot o 395% 10562 | [SdDev__ | 16322322 brd
— 97 5% 7017 | [StdErr 0509935 ar.
q :j :;g 90.0% 36.49 | | Mean 8001
“ﬂ [ 8 750% | quartie 3362 | | Upper 95% | 25.505914 ]
= 50.0% | median 21.77 | | Mean © a3
0 10303000 50807080%0 170 130 250% | quartile 1090 | | Lower 95% | 23.505116
10.0% 3.90 | | Mean
25% 162 | [N 1291 T i TR TS S
05% T3 Evesatent
0.0% minimum 0.73




148

» Distributions ParkingLotName=Northwest-Arkansas-Mall 8

Evacuation Time Distribution = Quantiles Momenis CDF Plot
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= | 97 5% 13449 | [SIdEr U.2551589 |
Looe = 90.0% 121.98 | | Mean 8 0n4
:o,,.g 75.0% | quartie | 10868 | | Upper 95% | 72.261103 5
ros 50.0% | median 52.02 | | Mean Sragd
010 30 % 10 %0 110130190 250% | quartile 3003 | | Lowver 85% | 71.163242 02
10.0% 498 | [ Mean ]
2 .s% 1 :Bs- N 23093 0 = ‘I‘L' '.:l)
ES 108 S
0.0% minImum U.b5

2) Evacuation time distribution for different parking rows in Wal-Mart

» Distributions ParkingRow#=parking row 1

Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 154.72 | [ Mean 46.865341
g O W e T 335% 12821 | [SidDev 2B || ]
- 97 5% 107.55 | [ StdErr 0.3426602 urd
Coce= 90.0% 89.16 | | Mean i
:oo.g 75.0% | quartile 7070 | [ Upper 95% | 47.53704 E il
. 500% | median 45560 | | Mean © as
010 30 % 70 %0 110130 10 250% | quartile 2043 | | Lower 95% | 46.193642 024
10.0% 441 Mean -
25% T05 | [N 8332 o = B -
5% uB3 Somatatyn
00% | minimum 050

» Distributions ParkingRow#=parking row 2

Evacuation Time Distribution Quantiles Moments CDF Plot
100.0% [ maximum | 16017 | [ Mean 4540339
S Lt T 335% 12425 | [SdDev | 9891173 el
97 5% 10550 | [ StdErr 1.3453378 urd
(o2 30.0% 85.32 | | Mean g ond
Foos | [750% | quartle | 6742 | |Upper95% | 46080349 | | "]
- 500% | median 4460 | | Mean ? gsd
010 30 0 70 %0 110120190 250% | quartile 2030 | | Lower 95% | 44.726431 024
10.0% 479 | [ Mean -
25% TIZ | [N 7492 o P » =
(5% U35 it
00% | minimum 047




» Distributions ParkingRow#=parking row 3
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Evacuation Time Distribution =~ Quantiles Momenis CDF Plot
100.0% | maximum | 145.57 | [Mean 35617972
i T B 935% 12315 | [StdDev___| 31.218658 bl
i 97 5% 10653 | [ SHEm 04241253 ar
CoeZ 90.0% 8758 | | Mean 8 0o
o | 75.0% | quartie 6961 | [Upper 95% | 46.449429 5o
o 500% | median 4336 | | Mean “asH
01020 40S0S70 S0 110 130 150 25.0% | quartile 17.95 | | Cower 95% | 44.786514
10.0% 477 | | Mean
2.5% 1.22 N 5418 0 ;J - 'l‘.' 2 'IIJI 7 4 ';} -
5% 058 Eveammlome
00% | minimum 040
3) Evacuation time distributions across different deshation
» Distributions Destination=371
Evacuation Time Distribution = Quantiles Momenis CDF Plot
100.0% | maximum | 117.68 | [ Mean 9.0030834
[ e————s 99.5% 86.91 | [StdDev 14025554 b
97 5% 5571 | [SHdEr 012285726
Foez| [300% 2257 | | Mean g 071
g 75.0% | quartie 1082 | | Upper 95% | 9.2439512 5
po.10s 50.0% | median 3.27 | | Mean “ as]
0 102030 40 5060 70 80010 120 250% | quartile 150 | | Lowver 95% | 8.7622155 02
10.0% 700 | | Mean 2y
2.5% 0.68 N 13028 0 :1 .;J l') l'J = V;X N a': w W ¢ w
05% 050 Eeasmlo
00% | minimum 0.32
» Distributions Destination=372
Evacuation Time Distribution  Quantiles Moments CDF Plot
100.0% | maximum | 123.07 | [ Mean 8. 7776363
[ w————axsyocie - - 99.5% 76.79 | [SidDev 12151739 b
97 5% 4091 | [SHdEr 0106232
Foas 90.0% 2055 | | Mean 8 0o
.omg 75.0% | quartile 1018 | [ Upper 95% | 8.3860441 E il
fo.10a 500% | median 3.25 | | Mean © as
0 102030 40 S0E07080% 110" 250% | guartile 1.70 | | Lowwer 95% | 7.9693484 02+
T0.0% 0392 | | Mean 0
2 .5% U .SU N 1 3070 0 '.\‘J I'J FI'J ﬂ'} 'L‘l) ‘:\: -
5% 052 trwamnlo
0.0% minimum 043
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> Distributions Destination=373

Evacuation Time Distribution  Quantiles Moments CDF Plot
100.0% | maximum [ 128.20 | [Mean 15405299 |
(11} e——esce 995% 105.46 | [StdDev T898575 | b
L 97 5% 7517 | [ StdErr 01647701 urd
F020 = 90.0% 35.71 | | Mean g onq
o108 | [750% |quartle | 2062 | [Upper 95% | 15731272 [
Loos® 50.0% | median 8.85 | [ Mean © 03]
0 1020304050 60708090 | 110 130 250% | quartile 253 | | Lower 95% | 15.085326 02+
T0.0% 125 | | Mean Ly
2.5% 0.70 N 1 3277 0 ;J -l'.' 'l'l ﬂl} 'L’l) ':lf “
U.5% ua7 Bt
00% | minimum 0.23

> Distributions Destination=374

Evacuation Time Distribution  Quantiles Momenis CDF Plot
100.0% | maximum | 134.73 | [ Mean 19.938368
(T10 - me—— 99.5% 10712 | [Sd Dev 70554349 bl
; 97 5% 7956 | [ STAErT 01795944 | ar
(0152 90.0% 4592 | | Mean 8 0o
'°"°§ 750% | quartie 28.12 | [Upper 95% | 20.290967 [
[9%< | [30.0% | median 7403 | | Mean LS
0 10203040 S0E07080%0 110 130 250% | quartile 410 | [ Lowver 95% | 19.585749 02
10.0% 173 | | Mean g
2.5% 0.72 N 1 3093 0 [ - ﬂ'l OII w ';.‘ w
5% 03 Erwaentim
U.0% minimum 0.30

> Distributions Destination=376

Evacuation Time Distribution ~ Quantiles Moments CDF Plot
100.0% | maximum | 131.02 | [ Mean 20.480311
(10 Y 99.5% 107 .27 | [Std Dev 20877493 3;_
A 97 5% 80.78 | [SIdErr 0152345 | urd
.10 90.0% 4893 | | Mean - ELE
P mg 75.0% | quartile 28.25 | | Upper 95% | 20.848912 E A
Lo 500% | median 13.45 | | Mean ? us
0 102030 (OEDT0ED0 | 110, 1 25.0% | quarile 532 | | Lower 95% | 2013171
10.0% 237 | [ Mean 5
25% T25 || N 13023 N EEE]
U5% 097 S
U.0% minimum U.68
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> Distributions Destination=377

Evacuation Time Distribution = Quantiles Mo me nts CDF Plot
100.0% | maximum | 133.10 | [ Mean 19575096
(10— 335% 10890 | [SidDev__ | 22097085 bl
97 5% 8342 | [ SIdErr 0.1925645 | urd
}:;g 90.0% 50.74 | | Mean g oo
-u;:sﬂ 75.0% | quartile 2713 | [ Upper 95% | 19.953139 E ::'
& 50.0% | median 10.83 | | Mean © as]
0 10203040 500708090 110 130 250% | guartile 407 | [ Lowver 95% | 19197054 02
10.0% 167 | [ Mean a8
2.5% 0.90 N 1 31 27 0 a - ﬂ'l OII w ‘;\4‘ w
05% 0.72 Cvmaatanlom
0.0% minimum U2

> Distributions Destination=378

Evacuation Time Distribution = Quantiles Moments CDF Plot
100.0% | maximum | 132.27 | [ Mean 19.324209
m:} [~ 99.5% 107 .48 | | Std Dev 2162118 z:_'
97.5% 8216 | [ SIdErr 01881312 urd
:::; 90.0% 3926 | | Mean £ 0]
_D'nsg 75.0% | quartile 2668 | | Upper 95% | 19.692973 ::'
= 50.0% | median 11.20 | [ Mean s
0 10203040 5060708050 110 190 250% | quartile 412 | | Lower 95% | 18.955445 02
10.0% 147 | | Mean ]
25% 072 | [N 13208 NP EEEE R
0.5% 0.53 Evaatantom
0.0% minimum 047




