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Abstract 
Inventory of road signs are part of asset 

management systems for a roadway agency. 

Detection, recognition, and positioning of road 

signs are critical components of a roadway 

asset management system.  In this research a 

stereo vision based system is developed to 

conduct automated road sign inventory. Such 

techniques may be also used to detect other 

objects on the road or by the roadside. The 

system in real-time integrates and synchronizes 

the data streams from multiple sensors of high-resolution cameras, Differential Global 

Positioning System (GPS) receivers, Distance Measurement Instrument (DMI), and 

Inertial Measurement Unit (IMU). Algorithms are developed based on data sets from the 

multiple positioning sensors to determine the positions of the moving vehicle and the 

orientation of the cameras. The key findings from the research include feature extraction 

and analysis that are applied for automated sign detection and recognition in the Right-

Of-Way (ROW) images, implementing a tracking algorithm of the candidate sign region 

among the image frames so the same signs are not counted more than once in an image 

sequence, and implementing stereo vision technique to compute the world coordinates of 

the road sign from the stereo-paired ROW images. Particular techniques are employed to 

conduct all data acquisition and analysis in real-time on board the vehicle. This system is 

an advanced alternative to traditional inventory methods in terms of safety and efficiency. 

It is anticipated that future studies may employ techniques developed in the research to 

automatically detect the presence of man-made objects around roadway areas for security 

purposes. 
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1 Introduction 
Many government and private agencies have the need to perform roadway asset inventory 
on a regular basis.  This practice has become increasingly common due to advancement 
of technology and relatively lower cost for data collection and processing. Particularly, 
many decades ago inventory of roadway signs and related assets was conducted manually 
with paper and pen.  Along with the application of 16-mm and 35-mm film, VHS and S-
VHS video, analog Laserdisc came with vehicular based acquisition systems.  Today, 
nearly all data collection devices for roadway inventory assets are digital, vehicular based 
and operated at highway speed.  This technology is commonly referred to as Right-of-
Way (ROW) imaging, or simply as photo logging. 
 
In recent years, there has been wide deployment of satellite based positioning systems for 
ROW imaging.  For instance, GPS receivers are used to provide x, y, and z references.  
IMU is also frequently used to guarantee signal integrity during GPS outages, further 
improve positioning accuracy, and at times provide 100 Hz or higher update rate which is 
normally not available in many industrial grade GPS receivers. Integrated multi-sensor 
systems are increasingly used to provide cost-effective, robust solutions to the challenges 
of rapid collection and storage of the geo-referenced roadway imagery.  
 
Even though ROW imagery can be well referenced with positioning data, the position of 
a road sign in an image is not directly known. Obtaining the sign positions requires 
hardware and software efforts to extract 3D positioning information for the objects (signs) 
present in the imagery. There are generally two solutions to obtain the object positions in 
the ROW imagery. Laser ranger (Laflamme et. al., 2006) shoots a low-power laser beam 
to the surrounding area and determines the position and distance of the object based on 
reflected laser. The advantages of the laser ranger are: 1) it has a wider view than a 
camera has, and 2) it gives accurate distance between the vehicle in motion and the object. 
The disadvantages of laser ranger are: 1) it requires expensive hardware and tremendous 
effort for system integration, and 2) it lacks visual appearance information and it still has 
to be used in conjunction with the images from the ROW imaging sub-system in the 
vehicle.  
 
Stereo vision technique is the second solution. This technique requires no additional 
hardware, therefore can be cost-effective, and much simpler in terms of hardware 
integration and maintenance. The stereo vision technique, a method to extract the 3D 
position from the 2D images, was started in the photogrammetric community (Slama, 
1980). It is frequently used in computer vision today. Many companies have developed 
hardware and software solutions which can be used in a wide range of industrial 
inspection tasks. Stereo vision applications are found in a variety of scientific, 
engineering, industrial, even cultural disciplines, including archaeology, architecture, e-
commerce, forensics, geology, planetary exploration, movie special effects, and virtual 
and augmented reality (Faugeras, 1993).  
 
A critical step in stereo vision technique is to establish correspondence across the stereo 
images. In this particular problem, the road sign recognition module in the system not 
only locates the sign region and identifies the sign type, but also provides a group of 



 

 

 

4 Automated Real-Time Object Detection and Recognition on Transportation Facilities 

February 2010 

 

feature points which can be used as stereo correspondences.  Road sign recognition is a 
computer vision process concerned with pattern recognition and classification. It was 
found that the road sign recognition has been commonly separated into two phases in the 
literatures: Detection and Recognition (or Classification).  Detection phase aims at 
decreasing the search space in the image by cropping out the candidate region.  
Recognition phase aims at recognizing whether the candidate region is a sign and 
identifying the sign type.  Artificial Neural Network (ANN) has been a major researched 
technique for the classification. Research based on ANN has been particularly active 
during the last decade (Lafuente-Arroyo et al., 2005).  Cross correlation has been another 
basic classification technique used in road sign classification problem (Paclik et al., 
2006).  In recent years, new techniques based on invariant feature extraction have gained 
more attention (Pierre and Pietro, 2005).  Feature matching is then conducted using 
various methods such as: conditional random field classifier (Weinman et al., 2004), 
pseudo-likelihood cross-validation (Paclik et al., 2000), Matching Pursuit filter (Hsu and 
Huang, 2001), and Support Vector Machine (Silapachote et al., 2005; Cyganek, 2007 and 
2008).  
 
Additional related work conducted recently includes using Kalman filter and wavelet 
techniques for traffic forecasting (Xie, Zhang, and Ye, 2007), a new vision algorithm for 
sign detection (Hu and Tsai, 2009), and laser scanning based techniques for geometric 
modeling and health monitoring (Cai and Rasdorf, 2007; Park, Lee, Adeli, and Lee, 
2007) 
 
Even though stereo vision itself is not a new technique in automated imaging, the proper 
implementation for sign inventory requires developing proper design, hardware 
integration, and software algorithms.  In this paper, the development of a stereo vision 
based road sign inventory system is presented.  The research focuses on the feasibility, 
reliability, and the precision of the stereo vision technique used in the road sign inventory 
system.  The paper also addresses the critical issues on the integration of the multiple 
sensors and the instantaneous feature extraction in the images. 

2 System Components 
The physical ROW imaging system is part of the Digital Highway Data Vehicle (DHDV) 
and shares common positioning sensors with other sub-systems in the DHDV.  The 
conceptual design of the automated stereo vision system is that the ROW imaging system 
produces digital images at known coordinates, linear reference and pointing angle based 
on GPS, IMU, and DMI data sources.  With the use of the stereo vision technique, the 
coordinates of the objects in the images can be subsequently calculated.  Consequently, 
the collection of objects representing roadside asset is accomplished.  The system 
integrates the following sensors: 
 

2.1 Digital Camera 
One or multiple professional digital camcorders can be used to capture the ROW images.  
The camcorder has a resolution of 1920*1080, or 1080p resolution.  Its iris can be 
automatically adjusted under adverse lighting environment.  The images are streamed 
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from the camcorder to the computer system memory at the default rate of 30 frames per 
second.  The camcorder can be mounted anywhere on the vehicle, as long as it has a clear 
view of the roadway and is on the right side where signs are located.  Typically it is 
mounted on a roof rack with an environmentally protected housing or on the dashboard.  
Digital imagery is recorded in real time into JPEG format on a hard drive at a recording 
frame rate that is pre-determined in the control software in the DHDV by the operator.  
The recording frame rate is normally less than 30 frames per second and calculated based 
on a fixed distance interval for each image.  The positioning information of images is 
acquired from various sensors, synchronized in real-time, and saved into the on-board 
database. 

 

2.2 GPS-IMU System 
One crucial element of the system is the integration of GPS receivers and IMU.  GPS and 
onboard IMU are complementary positioning devices.  GPS provides the position of the 
vehicle.  However, GPS signals can degrade sometimes due to various issues in the 
atmosphere even during clear view of the sky.  In addition, GPS signal may degrade in 
circumstances where obstructions are present, such as an overhead bridge, trees and 
forest, a tunnel, hills, or skyscrapers.  IMU consists of a triad of accelerometers and a 
triad of gyroscopes and continuously monitors position and acceleration of the vehicle.  
When the outputs of these six sensors are integrated with respect to time, the 
displacement and attitude are determined.  However, it suffers from biases, drifting errors, 
and scale factor errors that cause the solution to degrade in time or over distance.  
Kalman filter is commonly used to improve the position measurement made from both 
components of GPS receiver and IMU.  It is also able to estimate states where it has no 
direct measurement.  For example, position and velocity are compensated directly, but 
other measurements like accelerometer bias, have no direct measurements.  The Kalman 
filter tunes these parameters so that the GPS measurements and the inertial measurements 
match each other as closely as possible (Scherzinger, 2003).  After integration, GPS data 
can be used to correct IMU errors with its long term stability and no error-growth 
characteristics.  Any GPS outage or signal degradation can be alleviated with IMU data 
sets as well.  In this system, the integrated GPS/IMU system is used to provide a direct 
geo-referencing for the vehicle, consequently the cameras (three position components and 
three attitude angles).  The update rate of the IMU is 100 Hz, which provides more than 
one positioning data point for each foot of traveling distance at 60MPH (about 100KPH).  
The positioning accuracy of the standard GPS receiver is improved by either of the two 
satellites based differential correction services.  These are Satellite Based Augmentation 
System (SBAS) and OmniStar.  SBAS services, such as WAAS and EGNOS, are wide 
area differential corrections provided for free.  They provide an accuracy of about 1.2m 
Circular Error Probability (CEP).  Therefore, the integration of the GPS receiver and 
IMU improves the data positioning accuracy.  Data post-processing can be also 
conducted using the base station coordinates which can improve the final positioning 
accuracy to centimeter level.  
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2.3 DMI 
DHDV uses DMI to provide the linear reference along the route.  DMI works as a vehicle 
odometer.  For accurate measurement of distance, a pulse generator and an electronic 
interface amplifier are required to work together with a DMI.  An electrical impulse is 
generated by sensors when the vehicle is traveling.  The generated pulses are then sent to 
the electronic interface amplifier.  The electronic interface amplifier divides and 
amplifies the pulses into the suitable working rate.  The pulses from the electronic 
interface amplifier are then sent to trigger the cameras and various laser sensors for other 
sub-systems in DHDV.  The pulse reading of each dataset can be mathematically 
converted to distance with a calibrated ratio.  

2.4 Synchronizer 
GPS, IMU, DMI and the camera(s) collect their data at different frequencies.  The 
synchronization process is needed to integrate the information from multiple sensors.  In 
DHDV, an electronic control device, Control Chassis, was developed to integrate 
information and synchronize the signals from the different sensors.  Precise time 
registration, i.e. instantaneous geo-referencing is found to be a challenge.  A high 
resolution clock with a 1000 pulse/ second frequency is used in the Control Chassis.  The 
signal acquisition time can be interpolated with a rate of 1/1000 second.  Trigger signal is 
send to the cameras based on DMI signal.  Geo-reference data for each image is obtained 
by interpolating the closest available GPS/IMU data points.  

 

2.5 Software Solutions 
Software programs include two modules.  One is geo-referenced data acquisition to 
synchronize and integrate the data sources from multiple sensors.  Another module is 
asset extraction module which allows manual and automated asset extraction from the 
image data.  It enables the determination of the position of the objects in the imaging 
environment.  
 

3 Stereo Vision 

3.1 Triangulation 
The basic element of the stereo vision theory is triangulation (Wong, 1975).  As shown in 
Figure 1, a 3D point can be reconstructed from its two projections by computing the 
intersection of the two space rays corresponding to it.  The 3D location of that point is 
restricted to the straight line that passes through the center of projection and the 
projection of the object point.  Binocular stereo vision determines the position of a point 
in space by finding the intersection of the two lines passing through the center of 
projection and the projection of the point in each image. 
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Fig. 1. Triangulation (Wong 1975). 
 

 

 
 

Fig. 2. The relation among the coordinates (Tsai 1987). 

Triangulation describes the ideal relationship of the images and the objects.  To build a 
mathematical model between the location of the object in the images and the 3D position 
of the object point, several coordinates’ conversion (Figure 2) is involved, namely image 
coordinate ( fff YOX ), camera coordinate (xoy ), and world coordinate ( www YOX ).  

 
Considering the triangulation and the coordinate’s conversion, the relation between a 3D 
point P and its image projection p  is given by  

~~
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A  is camera intrinsic matrix.  Intrinsic parameters characterize the inherent properties of 
the camera optics, including the focal length, the image centre, the image scaling factor 
and the lens distortion coefficients.  
 

T
www ZYXP ],,[= is a 3D point. Its vector form is written as T

www ZYXP ]1,,,[
~

=  in 
equation (1). 
 
[ ]tR  is extrinsic parameters.  It is the rotation and translation which relates the world 
coordinate system to the camera coordinate system. 
 
However, this model is rather ideal.  Calibration process has to be conducted to determine 
the internal (or intrinsic) parameters and external (or extrinsic) parameters.  
 

3.2 Current Implementation 
For this ROW application, each of the captured image sequences has been geo-referenced 
by using GPS/IMU integrated positioning device.  The orientation parameters of each 
camera coordinate origin are determined with respect to a global coordinate system.  By 
using techniques of photogrammetric intersection, the position of 3D object relative to 
the camera coordinates is achieved.  To eventually calculate the world coordinates of the 
sign, the following coordinate transformation needs to be implemented, including C1, C2, 
and C3 coordinate systems: 
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Fig. 3.Virtual coordinates, vehicle coordinates, and the world coordinates. 

 

3.2.1 Virtual coordinates C1 

This coordinate system is established during the calibration process.  The origin of this 
coordinates is the origin selected in the calibration board.  The points used in the 
calibration process are represented in this coordinate.  Consequently, the location of the 
road sign is first represented in C1 coordinates from the 3D positioning function.  The 
calibration board is purposely put in a plane perpendicular to the vehicle’s y-direction 
(longitudinal direction).  This is to exclude the rotation between the vehicle coordinates 
and the virtual coordinates.  The offsets ( zyx ∆∆∆ ,, ) between the origin in the virtual 
coordinates and the origin in the vehicle coordinates are measured during the calibration 
process.  
 

3.2.2 Vehicle coordinates C2 

While the vehicle is moving, its position is determined by the positioning sensors.  The 
origin of the vehicle coordinates is a fixed point in the vehicle.  For simplification, the 
location of the GPS receiver is set as the origin.  The Y-axis is the forward direction 
(longitudinal) and the X-axis is point to the passenger’s side (transverse).  Once the sign 
location is obtained in the virtual coordinates C1, the task is then to convert it to the 
vehicle coordinates C2. 
For example, if point P in the space can be represented as ( 111 ,, zyx ) in the C1 
coordinates.  It can be converted into C2 coordinates using the following equations: 

)(
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3.2.3 World coordinates C3 

With the heading, roll and pitch provided by IMU, the coordinates of point P,  ( vvv ZYX ,, ) 

in vehicle coordinates can be easily converted to ( vvv ZYX ',',' ) in the ENU (local east, 

north, up) coordinates.  The ENU coordinates can then be converted to ECEF (Earth 
Centered Earth Fixed) coordinates ( ZYX ,, ) using Equation 6 (Zhu, 1994).  
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Whereas ),,( GGG ZYX is the ECEF coordinates of the GPS receiver, i.e. the origin of the 

vehicle coordinates or the ENU coordinates.  λ  and φ  are the geodetic longitude and 
latitude.  ECEF coordinates can be further converted to geodetic coordinates if needed 
(Zhu, 1994).  
 
In the current implementation, the determination of relative distances and sizes of objects 
in the image pairs is an operation dependent only on the stereo cameras and its 
calibration.  
 

3.3 Calibration  
A study of the current calibration methods is conducted to search for the most proper 
method for implementation. 
 
The techniques found in the literature for camera calibration can be broadly divided into 
photogrammetric calibration, self-calibration and something in between. There are three 
typical types of photogrammetric calibrations: 1) Linear methods: assume a simple 
pinhole camera model and incorporate no distortion effects.  This method is non-iterative 
and fast (Abdel-Aziz and Karara, 1971; Wong, 1975; Ganapathy, 1984; Frugeras and 
Toscani, 1986).  The limitation is the lens distortion effects can not be corrected.  2) 
Nonlinear methods: first the relationship between parameters is established and then an 
iterative solution is found by minimizing some error term (Brown, 1966; Haralick and 
Shapiro, 1993; Nomura et al., 1992).  This category of methods requires a good initial 
guess to start the iteration.  3) Two-step techniques: it involves a direct solution of some 
camera parameters and an iterative solution for other parameters.  This is the most 
commonly used approach to the problem (Tsai, 1987; Lenz and Tsai, 1988; Weng, 1992). 
Another category of calibration method is called self calibration. Techniques in this 
category do not use any calibration object. The calibration is conducted by moving a 
camera in a static scene (Zhang, 2000). Self calibration is more appealing to our problem 
due to its flexibility.  However, the development of this method is not mature.  
 
The method used in the research is based on Zhang’s method, the details of which can be 
found in Zhang’s paper (Zhang, 2000).  This approach lies between the photogrammetric 
calibration and self-calibration.  The reason for adopting this approach is that it is more 
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flexible than photogrammetric calibration and it gains considerable degree of robustness 
compared with self-calibration.  It only requires the camera to observe a planar pattern 
shown at a few (at least three) different orientations. Either the camera or the planar 
pattern can be moved by hand.  The motion does not need to be known.  
 

3.4 Stereo Camera Configuration 
 

 
(a) Dual-Camera  

 
 

(b) Single-Camera 
Fig. 4. Stereo pair-image formations. 

 
The performance of the stereo vision can vary with different camera configurations.  
Figure 4 shows two different formations of the stereo pair-image.  Figure 4a) shows a 
more conventional configuration, which is formed from two images taken by two 
cameras at the same time.  Figure 4b) shows a single-camera stereo vision, which is 
sometimes also called structure from motion (SFM) configuration.  The stereo pair-image 
is formed by two frames generated by the same camera and taken at different time.  
Finding structure from motion presents a similar problem as finding structure from stereo 
vision.  In this project, both camera configurations have been tested. 
 

3.5 Sign Extraction and Tracking 
Vast amount of image data can be collected at highway speed.  Therefore, rapid and 
accurate extraction of features of interest from the image stream is still a substantial 
challenge in both academic and industry circles.  Manual feature extraction represents a 
bottleneck in the processing flow, and is the predominant practice today despite many 
years of research.  The sign extraction module in this research includes capabilities of 
automatically determining presence of signs, classifying any number of road signs with 
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different colors and shapes in a rapid fashion, and measuring sign dimensions in image 
sequences, all conducted in real-time.  
 
First, raw roadway images are classified into different color bands based on color 
segmentation.  The threshold used in the segmentation is obtained from the statistical test 
of the real images.  After color segmentations, there are blobs generated in the binary 
images.  Blobs meet the specific shape and color criteria will be detected as candidate 
region and trigger the recognition.  The recognition is based on Principal Component 
Analysis (PCA) (Joliffe, 1986) and Support Vector Machine (SVM) (Chang, 2001).  PCA 
algorithm is applied to extract the features of the regions of interest.  These PCA features 
are input into the SVM model to do the classification.  
 
PCA is a useful statistical technique that has found application in fields such as face 
recognition and image compression. Mathematically, it is an orthogonal linear 
transformation that transforms the data to a new coordinate system, by which the greatest 
variance by any projection of the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the second coordinate, and so on.  
PCA involves the computation of the eigenvalue decomposition or singular value 
decomposition of a data set, usually after mean-centering the data for each attribute.  
Then the PCA features, obtained as the first several principal components, can be used in 
image interpretation and classification.  For road sign images, PCA deducts the 
dimension of the data set by retaining those characteristics of the data set that contribute 
most to its variance.  This property makes it a good tool to extract the features of the road 
sign. 
 
These features later are used as inputs into the SVM model to conduct the road sign 
classification.  SVM model predicts whether a new example falls into one category or the 
other with a given set of training examples. A SVM model is a representation of the 
examples as points in space, mapped so that the examples of the separate categories are 
divided by a clear gap that is as wide as possible. New examples are then mapped into 
that same space and predicted to belong to a category based on which side of the gap they 
fall onto.  As shown in Figure 5, the black dots and the white dots are the training 
examples which belong to two categories.  The Plane H series are the hyperplanes to 
separate the two categories.  The optical plane H is found by maximizing the margin 

value ||||/2 w .  Hyperplanes H1 and H2 are the planes on the border of each class and also 
parallel to the optical hyperplane H.  The data located on  H1 and H2 are called support 
vectors. 
 



 

 

 

13 Automated Real-Time Object Detection and Recognition on Transportation Facilities 

February 2010 

 

 
Fig. 5. The SVM binary classification. 

 
A standard road sign image library is developed based on collected road sign images in 
the field.  The images are captured under variant lighting conditions.  Part of the images 
in the library is used for training and others for testing.  The images are trained with a one 
vs. the other method.  LIBSVM (a LIBrary for SVM) was employed for classifying 
training.  The details of how to use LIBSVM can refer to the paper by Chang (2001).  
Once the SVM model is built up, proper class is assigned to each testing image. 
 
Other than the automated sign extraction module, the software module also provides a 
capability for the user to manually extract the sign along a quality control function.  Once 
sign extraction has been accomplished, positioning coordinates are assigned to each sign, 
and height and width measurements are made. 
 
As contiguous image frames may contain same signs over a distance, it is important that 
same signs are not identified as separate multiple signs in the software module.  A 
Kalman filter based tracking algorithm (Wang, 2006) is implemented in the software 
module to assure that single signs are correctly tracked and inventoried.  The application 
of Kalman filter is to predict the location and size of the candidate region in future frames 
based on the sign and the size of the candidate region in the current frame.  The Kalman 
filter technique includes two phases: time update and measurement update.   The time 
update procedure is based on the dynamic equation which is derived from the spatial 
constraints from the two successive frames.  The measurement update is based on the 
image processing location in the proximity of the predicted candidate region.  This 
method tremendously reduces searching area in images, and decreases searching time. 

4 Field Test  
In this research, a trial of sign detection is conducted to evaluate accuracy of the system.  
During initial setup and any subsequent changes of camera relative positions to the 
vehicle and between themselves, calibration must be conducted.  

4.1 Calibration  
The calibration is conducted in the lab before data collection.  The two cameras are 
mounted on a rack and the entire rack is fixed in the same position for data collection.  A 
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checker board with a grid size of 2.5 inches is used in the calibration with the following 
calibration process: 
 

1) Move the relative position of the camera to the calibration board four times and 
take four images T1, T2, T3, and T4. 

 
2) Lock up the camera on the rack which is going to be mounted on the vehicle.  

Make the calibration board parallel to the X axis of the rack, perpendicular to 
the Y axis of the rack (C2 and Figure 3).  Take the last image T5.  This is to 
exclude the rotation angles between C1 and C2 (Figure 3) and simplify the 
intermediate calculation. 

 
3) Use custom-made calibration software to detect the feature points on image T1-

T5 and record the image coordinates of these points. 
 
4) Determine the global coordinates of the feature points on the camera board.  

Use the bottom left feature point in the calibration board as the origin, right 
direction as X, up as Y, the direction toward camera is Z. 

 
5) Input virtual coordinates and image coordinates of the feature points in the five 

images (T1-T5) to the calibration software.  The output will be camera intrinsic 
matrix A and extrinsic parameters[ ]tR  (Equation 1). 

 
A similar calibration is conducted for the single-camera configuration.    

4.2 Preliminary Test 
Upon completion of the calibration process, a preliminary test is conducted in the lab. 
The goal of the test is to examine the factors that will affect the accuracy of the stereo 
vision system with dual-camera configuration.  An object in the lab with a certain size is 
put at different distance from the cameras.  The distance and the size of the object are 
measured using the stereo vision algorithms.  The measured results are compared with the 
true values and be listed in Table 1 and Table 2.  It is found that: 1) the error increases as 
the distance between the object and the cameras increases.  2) the accuracy of the result is 
improved with longer baseline length for dual camera configuration.  However, due to the 
limitation of the width of the vehicle body, the baseline can not be expanded as much as 
desired.     
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Table 1 

 The test result for two-camera configuration. 
(Base line = 40.64 mm, Camera Angle = 7.9o ) 

Test 
No. 

Size 
(mm) 

Distance 
(mm) 

Size 
 error 

Distance 
error 

1 183.9 2901.9 1.19% 1.05% 
2 183.9 4467.2 3.19% 2.79% 
3 183.9 9347.2 6.09% 7.69% 
4 183.9 12344.4 6.48% 9.39% 

 
Table 2 

The test result for two-camera configuration. 
(Base line = 83.82mm, Camera Angle = 8.1o ) 

Test 
No. 

Size 
(mm) 

Distance 
(mm) 

Size 
error 

Distance  
error 

1 183.9 3708.4 0.22% 0.60% 
2 183.9 6064.2 1.41% 1.33% 
3 183.9 9912.4 2.12% 3.01% 
4 183.9 14300.2 3.36% 2.63% 

 

4.3 Road Test 
The stereo vision system, coupled with other positioning sensors in the DHDV, is used to 
conduct road sign inventory survey test shown in Figure 6.  A road loop route near the 
research site in Fayetteville, Arkansas is chosen for the test.  There are 52 signs in all 
along the route selected in the experiment.  A selected 26 signs are shown in Figure 6 due 
to space limitation.  Image data is collected while DHDV is driven at 25-45 MPH, largely 
following the speed limit on the road.  The traveling path of the survey vehicle is 
rectangular in shape per the data gathered with the 100 Hz IMU.  The pins in the Figure 6 
indicate the road signs that are automatically detected and positioned using the developed 
system.  The reference positioning coordinates of GPS format for all signs are obtained 
using a professional level handheld GPS unit with an accuracy of 0.3 meter in planar 
positioning.  The difference in planar positioning between the handheld GPS results and 
the results obtained from the ROW imaging system are 5-18 meters from the dual-camera 
configuration and 1-3 meters from the single-camera configuration. 
 
The results from the single-camera configuration are more accurate than those from dual-
camera configuration.  During the experiment, several parameters are found to be 
important to positioning accuracy, some of which may have influenced the outcome.   
 

• The accuracy of the start position (GPS/IMU) 
• Calibration of the internal parameters of the camera(s) in use (focal length, 

position of principal point, pixel size, pixel spacing, lens distortion, etc.) 
• Calibration of the equipment configuration on the survey vehicle (camera 

orientation, distances from positioning system) 
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• Distance between the camera and the objects that are being measured or 
positioned 

• The pixel spacing which is related to the zooming factors of the camera 
• Synchronization capabilities of the acquisition system relative to image and 

geographic position data capture 
• Timing control of the system clock in the acquisition system, which is used as a 

critical control factor along with results of DMI and IMU to determine 
longitudinal distance of traveling 

 
For instance, the synchronization of image sequence from both cameras in the dual-
camera configuration may have deteriorated the positioning accuracy due to timing 
control error in the operating system.  Another possible contributing factor is the 
spacing of the two cameras may be too short in the lateral direction.  A further 
improvement of the timing control is needed at less than 1 millisecond accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 6. The map for the test site with the detected road signs.
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5 Conclusion 
In recent years, the need to satisfy various asset management requirements prompted 
roadway agencies to start collecting various roadside manmade structures. Roadway 
signs are a primary component of these assets.  However, since the start of using digital 
imagery for right-of-way survey in the 1990’s, investment through both public and 
private sectors in developing automated asset inventory has stalled in recent years, 
despite substantial progresses have been made in the automation of road sign detection, 
recognition, and positioning.  This paper represents a renewed effort to systematically 
design and integrate a real-time system for both acquisition and processing.  A working 
level hardware system housed in the Digital Highway Data Vehicle (DHDV) has been 
developed and initial versions of calibration and processing software have been tested.  
The accuracy of the developed stereo vision system was evaluated via a case study by 
comparing them to locations measured by a handheld precision GPS receiver.  This study 
concludes that the proposed stereo vision based automated road sign inventory system 
has achieved acceptable accuracy.  The ultimate goal is to develop and implement a fully 
automated system to conduct sign inventory for all three objectives: detection, 
recognition, and positioning.  In the future more extensive tests shall be conducted on 
larger road networks of both interstate highways and local streets. Precision and bias 
based on certain benchmarks relating to the three objectives will need to be established 
and studied.  Reflectivity and conditions of road signs need to be evaluated as well.  It 
should be pointed out that LIDAR technology has been experimented in recent years to 
detect presence of signs and other manmade objects on or near roads. It is envisioned that 
in the next few years, several types of fully automated systems may emerge in the market 
place for sign inventory. The techniques described in the research may be of significance 
to future studies which focus on the detection of the presence of man-made objects 
around roadway areas. 
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