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Abstract
Inventory of road signs are part of asset

management systems for a roadway agency

Detection, recognition, and positioning of roe

signs are critical components of a roadway

asset management system. In this research ROAD ROAD CLOSED ROAD CLOSED
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stereo vision based system is developed to

conduct automated road sign inventory. Suc

] BRIDGE OUT —
techniques may be also used to detect other DG S ot

objects on the road or by the roadside. The

system in real-time integrates and synchroni

the data streams from multiple sensors of highlaéiem cameras, Differential Global
Positioning System (GPS) receivers, Distance Measent Instrument (DMI), and
Inertial Measurement Unit (IMU). Algorithms are @édoped based on data sets from the
multiple positioning sensors to determine the pasg of the moving vehicle and the
orientation of the cameras. The key findings friw@ tesearch include feature extraction
and analysis that are applied for automated siggctien and recognition in the Right-
Of-Way (ROW) images, implementing a tracking aljon of the candidate sign region
among the image frames so the same signs are matecbmore than once in an image
sequence, and implementing stereo vision techrimuempute the world coordinates of
the road sign from the stereo-paired ROW imagesicBkar techniques are employed to
conduct all data acquisition and analysis in reaéton board the vehicle. This system is
an advanced alternative to traditional inventoryhuods in terms of safety and efficiency.
It is anticipated that future studies may emplahteques developed in the research to
automatically detect the presence of man-made tsbgound roadway areas for security

purposes.



Contents

I 11 Yo T3 1 o o P 3
2 SYSEEM COMPONENTS.....uiiiiiiiiiiiit e eeeeereer e e e e et e e e e e e e ee e e e e e e e e eeeeeeeersannnas 4
2.1 Digital CAMEI@ ..ccveeieeiiiiiieiieieeeis mmmmmm e e e ems s nennnnne 4
2.2 GPS-IMU SYSIEIM ...t e 5
2.3 DM et e e e e e et e e e e e et ranteeaaeeeeeann 6
2.4 SYNCAIONIZEN ... 6
2.5 SOftware SOIULIONS ......uvuiiiiic i e e e e e nee e 6
GRS (] (=T AV 11 (o] o PSSP 6
3L THANGUIALION ... 6
3.2 Current Implementation ..........ooooo oo 8
3.2.1 Virtual coordinates ClL .........cuviiiiemmmeeieeeeiiiiiieie e 9
3.2.2 Vehicle coordinates C2............... s e eesiiiieieeeie e e e s s e e 9
3.2.3 WOrld coordinates C3 .........coiiiiiiiiemei it 10
3.3 CaliDration .........ueiiiiiiiie e 10
3.4 Stereo Camera Configuration ............ccccceeee e, 11
3.5 Sign Extraction and TracCKiNg...........uuueeuueeeeieeeeeeeeieerieineeeeeeeiereernieeneeene. 11
T (o I I TP PPPTP PP 13
R 02 1] o] 7= 11 0] o U PP PR TPPPPR PRI 13
4.2 PrelimMiNary TESE ...uu it mmmmmm e e e e e e e e e e e eaaaeaeaaaeeaaaaeaaaaaeeaaeaasaaassaneanaens 14
G o - 1o [ TS SO PR RPPPPR PO 15
5 CONCIUSION ..ttt et ettt e e e e e e et e e e e e rmr e e e e e e e e e s eannnes 17

(R (10 1oL =TT RT 18




1 Introduction

Many government and private agencies have the togeerform roadway asset inventory
on a regular basis. This practice has becomeastrgly common due to advancement
of technology and relatively lower cost for datdlesction and processing. Particularly,
many decades ago inventory of roadway signs alateehssets was conducted manually
with paper and pen. Along with the applicationtéfmm and 35-mm film, VHS and S-
VHS video, analog Laserdisc came with vehicularedaacquisition systems. Today,
nearly all data collection devices for roadway imeey assets are digital, vehicular based
and operated at highway speed. This technologymsmonly referred to as Right-of-
Way (ROW) imaging, or simply as photo logging.

In recent years, there has been wide deploymesuteflite based positioning systems for
ROW imaging. For instance, GPS receivers are tsguiovide X, y, and z references.
IMU is also frequently used to guarantee signagégnty during GPS outages, further
improve positioning accuracy, and at times provi®@ Hz or higher update rate which is
normally not available in many industrial grade Gfe8eivers. Integrated multi-sensor
systems are increasingly used to provide cost#ffecobust solutions to the challenges
of rapid collection and storage of the geo-refeeehmadway imagery.

Even though ROW imagery can be well referenced pithitioning data, the position of
a road sign in an image is not directly known. @titey the sign positions requires
hardware and software efforts to extract 3D pasitig information for the objects (signs)
present in the imagery. There are generally twatgnis to obtain the object positions in
the ROW imagery. Laser ranger (Laflamme et. alo62&hoots a low-power laser beam
to the surrounding area and determines the positmhdistance of the object based on
reflected laser. The advantages of the laser raagerl) it has a wider view than a
camera has, and 2) it gives accurate distance batthe vehicle in motion and the object.
The disadvantages of laser ranger are: 1) it reguexpensive hardware and tremendous
effort for system integration, and 2) it lacks \abappearance information and it still has
to be used in conjunction with the images from R@W imaging sub-system in the
vehicle.

Stereo vision technique is the second solutions Tachnique requires no additional
hardware, therefore can be cost-effective, and msiofipler in terms of hardware
integration and maintenance. The stereo visionnigcle, a method to extract the 3D
position from the 2D images, was started in thet@irammetric community (Slama,
1980). It is frequently used in computer visionagdMany companies have developed
hardware and software solutions which can be use@ wide range of industrial
inspection tasks. Stereo vision applications arando in a variety of scientific,
engineering, industrial, even cultural disciplingg;luding archaeology, architecture, e-
commerce, forensics, geology, planetary exploratinavie special effects, and virtual
and augmented reality (Faugeras, 1993).

A critical step in stereo vision technique is tbabtish correspondence across the stereo
images. In this particular problem, the road sigoognition module in the system not
only locates the sign region and identifies thendigpe, but also provides a group of



feature points which can be used as stereo comdgpoes. Road sign recognition is a
computer vision process concerned with patterngeition and classification. It was
found that the road sign recognition has been conlyreeparated into two phases in the
literatures: Detection and Recognition (or Classifion). Detection phase aims at
decreasing the search space in the image by cmppput the candidate region.
Recognition phase aims at recognizing whether thedidate region is a sign and
identifying the sign type. Artificial Neural Netwo (ANN) has been a major researched
technique for the classification. Research basedAdN has been particularly active
during the last decade (Lafuente-Arroyo et al.,3)00Cross correlation has been another
basic classification technique used in road sigrsgification problem (Paclik et al.,
2006). In recent years, new techniques basedwamiamt feature extraction have gained
more attention (Pierre and Pietro, 2005). Featnegching is then conducted using
various methods such as: conditional random fiéédsifier (Weinman et al., 2004),
pseudo-likelihood cross-validation (Paclik et 2aD00), Matching Pursuit filter (Hsu and
Huang, 2001), and Support Vector Machine (Silapeckoal., 2005; Cyganek, 2007 and
2008).

Additional related work conducted recently includesng Kalman filter and wavelet
techniques for traffic forecasting (Xie, Zhang, arel 2007), a new vision algorithm for
sign detection (Hu and Tsai, 2009), and laser sngnibased techniques for geometric
modeling and health monitoring (Cai and Rasdorf)720Park, Lee, Adeli, and Lee,
2007)

Even though stereo vision itself is not a new témpind in automated imaging, the proper
implementation for sign inventory requires devetgpiproper design, hardware

integration, and software algorithms. In this papee development of a stereo vision
based road sign inventory system is presented. r@$earch focuses on the feasibility,
reliability, and the precision of the stereo visteohnique used in the road sign inventory
system. The paper also addresses the criticagégssn the integration of the multiple

sensors and the instantaneous feature extractite iimages.

2 System Components

The physical ROW imaging system is part of the @aigHighway Data Vehicle (DHDV)
and shares common positioning sensors with othkrsgstems in the DHDV. The
conceptual design of the automated stereo visistesyis that the ROW imaging system
produces digital images at known coordinates, fimeterence and pointing angle based
on GPS, IMU, and DMI data sources. With the use¢hefstereo vision technique, the
coordinates of the objects in the images can bsesjukently calculated. Consequently,
the collection of objects representing roadsideetass accomplished. The system
integrates the following sensors:

2.1 Digital Camera

One or multiple professional digital camcorders barused to capture the ROW images.
The camcorder has a resolution of 1920*1080, orOfOBesolution. Its iris can be
automatically adjusted under adverse lighting emrment. The images are streamed



from the camcorder to the computer system memotleatiefault rate of 30 frames per
second. The camcorder can be mounted anywhetgeorehicle, as long as it has a clear
view of the roadway and is on the right side wheigns are located. Typically it is
mounted on a roof rack with an environmentally goted housing or on the dashboard.
Digital imagery is recorded in real time into JPE@mat on a hard drive at a recording
frame rate that is pre-determined in the contrdiwere in the DHDV by the operator.
The recording frame rate is normally less thanrathés per second and calculated based
on a fixed distance interval for each image. Tbsitpning information of images is
acquired from various sensors, synchronized intred, and saved into the on-board
database.

2.2 GPSIMU System

One crucial element of the system is the integnatibGPS receivers and IMU. GPS and
onboard IMU are complementary positioning devic&PS provides the position of the
vehicle. However, GPS signals can degrade sometime to various issues in the
atmosphere even during clear view of the sky. dditeoon, GPS signal may degrade in
circumstances where obstructions are present, aachn overhead bridge, trees and
forest, a tunnel, hills, or skyscrapers. IMU castsiof a triad of accelerometers and a
triad of gyroscopes and continuously monitors pasiaind acceleration of the vehicle.
When the outputs of these six sensors are intefgratth respect to time, the
displacement and attitude are determined. Howdveuffers from biases, drifting errors,
and scale factor errors that cause the solutionleigrade in time or over distance.
Kalman filter is commonly used to improve the piositmeasurement made from both
components of GPS receiver and IMU. It is als@dblestimate states where it has no
direct measurement. For example, position andcigl@are compensated directly, but
other measurements like accelerometer bias, hawkrect measurements. The Kalman
filter tunes these parameters so that the GPS mezasuts and the inertial measurements
match each other as closely as possible (Scherzia@@3). After integration, GPS data
can be used to correct IMU errors with its longmtestability and no error-growth
characteristics. Any GPS outage or signal degi@adaian be alleviated with IMU data
sets as well. In this system, the integrated GW3/system is used to provide a direct
geo-referencing for the vehicle, consequently #maaras (three position components and
three attitude angles). The update rate of the IMWO0 Hz, which provides more than
one positioning data point for each foot of trangldistance at 60MPH (about 100KPH).
The positioning accuracy of the standard GPS recessimproved by either of the two
satellites based differential correction servicdfiese are Satellite Based Augmentation
System (SBAS) and OmniStar. SBAS services, sucWAAS and EGNOS, are wide
area differential corrections provided for freeheV provide an accuracy of about 1.2m
Circular Error Probability (CEP). Therefore, thaegration of the GPS receiver and
IMU improves the data positioning accuracy. Datastgprocessing can be also
conducted using the base station coordinates wtachimprove the final positioning
accuracy to centimeter level.



2.3DMI

DHDV uses DMI to provide the linear reference alting route. DMI works as a vehicle
odometer. For accurate measurement of distanpelse generator and an electronic
interface amplifier are required to work togethaethva DMI. An electrical impulse is
generated by sensors when the vehicle is travelifige generated pulses are then sent to
the electronic interface amplifier. The electroniderface amplifier divides and
amplifies the pulses into the suitable working rat&€he pulses from the electronic
interface amplifier are then sent to trigger theneeas and various laser sensors for other
sub-systems in DHDV. The pulse reading of eactas#dt can be mathematically
converted to distance with a calibrated ratio.

2.4 Synchronizer

GPS, IMU, DMI and the camera(s) collect their datadifferent frequencies. The
synchronization process is needed to integraténfbemation from multiple sensors. In
DHDV, an electronic control device, Control Chassias developed to integrate
information and synchronize the signals from th&edent sensors. Precise time
registration, i.e. instantaneous geo-referencingoisnd to be a challenge. A high
resolution clock with a 1000 pulse/ second freqyasased in the Control Chassis. The
signal acquisition time can be interpolated wittate of 1/1000 second. Trigger signal is
send to the cameras based on DMI signal. Geoereferdata for each image is obtained
by interpolating the closest available GPS/IMU dadants.

2.5 Softwar e Solutions

Software programs include two modules. One is rgéerenced data acquisition to
synchronize and integrate the data sources frontipteulsensors. Another module is
asset extraction module which allows manual andraated asset extraction from the
image data. It enables the determination of th&tipo of the objects in the imaging
environment.

3 Stereo Vision

3.1 Triangulation

The basic element of the stereo vision theoryiamgulation (Wong, 1975). As shown in
Figure 1, a 3D point can be reconstructed fromhits projections by computing the

intersection of the two space rays corresponding. ta'he 3D location of that point is

restricted to the straight line that passes throtlgh center of projection and the
projection of the object point. Binocular sterasian determines the position of a point
in space by finding the intersection of the twoesnpassing through the center of
projection and the projection of the point in eanhge.
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Fig. 1. Triangulation (Wong 1975).
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Triangulation describes the ideal relationshiphe images and the objects. To build a
mathematical model between the location of theatbethe images and the 3D position
of the object point, several coordinates’ convergieigure 2) is involved, namely image

coordinate X,0O,Y, ), camera coordinatexgy ), and world coordinatex,O,Y,,).

Considering the triangulation and the coordinat@sversion, the relation between a 3D

point P and its image projectiop is given by

sp=AR t]P

)



a y uy,
A=10 B v, )
0O 0 1
P=[X,Y,Z] 3)
p=[uv", p=[uv’ (4)

p=[u V] isa2D point,fo =[u,v]1]", sis a scale.

A is camera intrinsic matrix. Intrinsic parametehsracterize the inherent properties of
the camera optics, including the focal length, ithege centre, the image scaling factor
and the lens distortion coefficients.

P=[X,,Y,,Z,]"is a 3D point. Its vector form is written el:@,:[XW,YW,ZW,l]T in
equation (1).

[R t] is extrinsic parameters. It is the rotation arahslation which relates the world
coordinate system to the camera coordinate system.

However, this model is rather ideal. Calibratioogess has to be conducted to determine
the internal (or intrinsic) parameters and extefoakextrinsic) parameters.

3.2 Current Implementation

For this ROW application, each of the captured iensgquences has been geo-referenced
by using GPS/IMU integrated positioning device. eTdrientation parameters of each
camera coordinate origin are determined with resimea global coordinate system. By
using techniques of photogrammetric intersectibe, position of 3D object relative to
the camera coordinates is achieved. To eventoaltulate the world coordinates of the
sign, the following coordinate transformation netzlbe implemented, including C1, C2,
and C3 coordinate systems:
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3.2.1 Virtual coordinates C1

This coordinate system is established during thi&reéion process. The origin of this
coordinates is the origin selected in the calibratboard. The points used in the
calibration process are represented in this coatein Consequently, the location of the
road sign is first represented in C1 coordinatesfthe 3D positioning function. The
calibration board is purposely put in a plane pedoeular to the vehicle’s y-direction
(longitudinal direction). This is to exclude thatation between the vehicle coordinates
and the virtual coordinates. The offsefs(Ay,Az) between the origin in the virtual
coordinates and the origin in the vehicle cooradinaire measured during the calibration
process.

3.2.2 Vehicle coordinates C2

While the vehicle is moving, its position is detémed by the positioning sensors. The
origin of the vehicle coordinates is a fixed pamtthe vehicle. For simplification, the
location of the GPS receiver is set as the origithe Y-axis is the forward direction
(longitudinal) and the X-axis is point to the pasge’s side (transverse). Once the sign
location is obtained in the virtual coordinates @i task is then to convert it to the
vehicle coordinates C2.

For example, if point P in the space can be reptedeas ;,y,,z ) in the C1

coordinates. It can be converted into C2 coorésmasting the following equations:
X, =% —AX
Y, ==(z-A2) )
Z,=(y, —4y)




3.2.3 World coordinates C3
With the heading, roll and pitch provided by IMWetcoordinates of point P,X(,,Y,,Z,)

in vehicle coordinates can be easily convertedXq, (Y',,Z',) in the ENU (local east,

north, up) coordinates. The ENU coordinates cam the converted to ECEF (Earth
Centered Earth Fixed) coordinates Y, Z) using Equation 6 (Zhu, 1994).

X -sind —singcosA cosgcosi || X', Xs
Y |=| cosA -singsinA  cosgsinAd | Y', [+] Yg (6)
Z 0 cosp sing Z' Z

\

Whereas(X;,Y;,Z; s the ECEF coordinates of the GPS receiver, he otrigin of the
vehicle coordinates or the ENU coordinates.and ¢ are the geodetic longitude and

latitude. ECEF coordinates can be further condettegeodetic coordinates if needed
(Zhu, 1994).

In the current implementation, the determinatiomethtive distances and sizes of objects
in the image pairs is an operation dependent omlytlee stereo cameras and its
calibration.

3.3 Calibration

A study of the current calibration methods is castdd to search for the most proper
method for implementation.

The techniques found in the literature for cametération can be broadly divided into
photogrammetric calibration, self-calibration armngthing in between. There are three
typical types of photogrammetric calibrations: lindar methods: assume a simple
pinhole camera model and incorporate no distosibects. This method is non-iterative
and fast (Abdel-Aziz and Karara, 1971; Wong, 19@&anapathy, 1984; Frugeras and
Toscani, 1986). The limitation is the lens digtorteffects can not be corrected. 2)
Nonlinear methods: first the relationship betweanameters is established and then an
iterative solution is found by minimizing some erterm (Brown, 1966; Haralick and
Shapiro, 1993; Nomura et al., 1992). This categdrynethods requires a good initial
guess to start the iteration. 3) Two-step techesqit involves a direct solution of some
camera parameters and an iterative solution foerogarameters. This is the most
commonly used approach to the problem (Tsai, 1B8iiz and Tsai, 1988; Weng, 1992).
Another category of calibration method is calledf salibration. Techniques in this
category do not use any calibration object. Thébion is conducted by moving a
camera in a static scene (Zhang, 2000). Self edidhr is more appealing to our problem
due to its flexibility. However, the developmeifitlois method is not mature.

The method used in the research is based on Zharedl®od, the details of which can be
found in Zhang’s paper (Zhang, 2000). This appndees between the photogrammetric
calibration and self-calibration. The reason fdogting this approach is that it is more



flexible than photogrammetric calibration and itngaconsiderable degree of robustness
compared with self-calibration. It only requirdsetcamera to observe a planar pattern
shown at a few (at least three) different orieotai Either the camera or the planar
pattern can be moved by hand. The motion doesesd to be known.

3.4 Stereo Camera Configuration

=

(a) Dual-Camera

=5 =
>0 | =]IE

~

(b) Single-Camera
Fig. 4. Stereo pair-image formations.

The performance of the stereo vision can vary wiiffierent camera configurations.

Figure 4 shows two different formations of the stepair-image. Figure 4a) shows a
more conventional configuration, which is formednr two images taken by two

cameras at the same time. Figure 4b) shows aesgaghera stereo vision, which is
sometimes also called structure from motion (SF&fjfiguration. The stereo pair-image
is formed by two frames generated by the same Garaed taken at different time.

Finding structure from motion presents a similatjdem as finding structure from stereo
vision. In this project, both camera configuratidrave been tested.

3.5 Sign Extraction and Tracking

Vast amount of image data can be collected at haghspeed. Therefore, rapid and
accurate extraction of features of interest from tmage stream is still a substantial
challenge in both academic and industry circlesantvl feature extraction represents a
bottleneck in the processing flow, and is the pmeid@ant practice today despite many
years of research. The sign extraction moduléhi® tesearch includes capabilities of
automatically determining presence of signs, dgsg any number of road signs with



different colors and shapes in a rapid fashion, medsuring sign dimensions in image
sequences, all conducted in real-time.

First, raw roadway images are classified into ddfé color bands based on color
segmentation. The threshold used in the segmentatiobtained from the statistical test
of the real images. After color segmentationsyehare blobs generated in the binary
images. Blobs meet the specific shape and colterier will be detected as candidate
region and trigger the recognition. The recognitis based on Principal Component
Analysis (PCA) (Joliffe, 1986) and Support Vectoadhine (SVM) (Chang, 2001). PCA

algorithm is applied to extract the features ofrbgions of interest. These PCA features
are input into the SVM model to do the classifioati

PCA is a useful statistical technique that has doapplication in fields such as face
recognition and image compression. Mathematicalty,is an orthogonal linear
transformation that transforms the data to a nesvdinate system, by which the greatest
variance by any projection of the data comes totig¢he first coordinate (called the first
principal component), the second greatest variancthe second coordinate, and so on.
PCA involves the computation of the eigenvalue dgmosition or singular value
decomposition of a data set, usually after meanecery the data for each attribute.
Then the PCA features, obtained as the first seperacipal components, can be used in
image interpretation and classification. For rosidn images, PCA deducts the
dimension of the data set by retaining those charatics of the data set that contribute
most to its variance. This property makes it adgtmol to extract the features of the road
sign.

These features later are used as inputs into thd 8¥del to conduct the road sign
classification. SVM model predicts whether a neaaraple falls into one category or the
other with a given set of training examples. A S\Wbdel is a representation of the
examples as points in space, mapped so that thepées of the separate categories are
divided by a clear gap that is as wide as posshdsv examples are then mapped into
that same space and predicted to belong to a ¢gtbgeed on which side of the gap they
fall onto. As shown in Figure 5, the black dotslahe white dots are the training
examples which belong to two categories. The Pldreeries are the hyperplanes to
separate the two categories. The optical plans Fhund by maximizing the margin

value2/lwll. Hyperplanes$i; andH; are the planes on the border of each class aad als
parallel to the optical hyperplane H. The dataated on H; andH, are called support
vectors.
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Fig. 5. The SVM binary classification.

A standard road sign image library is developedtam collected road sign images in
the field. The images are captured under varightihg conditions. Part of the images
in the library is used for training and otherstiesting. The images are trained with a one
vs. the other method. LIBSVM (a LIBrary for SVM)aw employed for classifying
training. The details of how to use LIBSVM canetefo the paper by Chang (2001).
Once the SVM model is built up, proper class isgresl to each testing image.

Other than the automated sign extraction moduke,sthftware module also provides a
capability for the user to manually extract thensadpng a quality control function. Once
sign extraction has been accomplished, positioooaydinates are assigned to each sign,
and height and width measurements are made.

As contiguous image frames may contain same sigesadistance, it is important that
same signs are not identified as separate mulges in the software module. A
Kalman filter based tracking algorithm (Wang, 200§)implemented in the software
module to assure that single signs are correcbked and inventoried. The application
of Kalman filter is to predict the location andesiaf the candidate region in future frames
based on the sign and the size of the candidatenréythe current frame. The Kalman
filter technique includes two phases: time update measurement update. The time
update procedure is based on the dynamic equatiochws derived from the spatial
constraints from the two successive frames. Thasmement update is based on the
image processing location in the proximity of theedicted candidate region. This
method tremendously reduces searching area in Bnagd decreases searching time.

4 Field Test

In this research, a trial of sign detection is agrtdd to evaluate accuracy of the system.
During initial setup and any subsequent changesaofiera relative positions to the
vehicle and between themselves, calibration musbbducted.

4.1 Calibration

The calibration is conducted in the lab before dailection. The two cameras are
mounted on a rack and the entire rack is fixethendame position for data collection. A



checker board with a grid size of 2.5 inches idugsethe calibration with the following
calibration process:

1) Move the relative position of the camera to thebcation board four times and
take four images T1, T2, T3, and T4.

2) Lock up the camera on the rack which is going tartmeinted on the vehicle.
Make the calibration board parallel to the X axigte rack, perpendicular to
the Y axis of the rack (C2 and Figure 3). Take ldst image T5. This is to
exclude the rotation angles between C1 and C2 (&i@) and simplify the
intermediate calculation.

3) Use custom-made calibration software to detectehtire points on image T1-
T5 and record the image coordinates of these points

4) Determine the global coordinates of the featurengsobn the camera board.
Use the bottom left feature point in the calibmatiooard as the origin, right
direction as X, up as Y, the direction toward caansrZ.

5) Input virtual coordinates and image coordinatetheffeature points in the five
images (T1-T5) to the calibration software. Thépatwill be camera intrinsic
matrix Aand extrinsic paramete{B t] (Equation 1).

A similar calibration is conducted for the singl@gera configuration.

4.2 Preliminary Test

Upon completion of the calibration process, a prglary test is conducted in the lab.
The goal of the test is to examine the factors tlitaffect the accuracy of the stereo
vision system with dual-camera configuration. Ameat in the lab with a certain size is
put at different distance from the cameras. Tlstadce and the size of the object are
measured using the stereo vision algorithms. Téasored results are compared with the
true values and be listed in Table 1 and Tablé& & found that: 1) the error increases as
the distance between the object and the cameresas®s. 2) the accuracy of the result is
improved with longer baseline length for dual caanesnfiguration. However, due to the
limitation of the width of the vehicle body, thedadine can not be expanded as much as
desired.



Tablel
The test result for two-camera configuration.

(Base line = 40.64 mm, Camera Angle =3.9

Test Sze Distance Sze Distance
No. (mm) (mm) error error
1 183.9 2901.9 1.19% 1.05%
2 183.9 4467.2 3.19% 2.79%
3 183.9 9347.2 6.09% 7.69%
4 183.9 12344.4 6.48%  9.39%

Table2

The test result for two-camera configuration.
(Base line = 83.82mm, Camera Angle ="§.1
Sze Distance Sze Distance
(mm) (mm) error error
183.9 3708.4 0.22%  0.60%
183.9 6064.2 1.41% 1.33%
183.9 9912.4 2.12% 3.01%
183.9 14300.2 3.36% 2.63%

Aoomn—\_ga

4.3 Road Test

The stereo vision system, coupled with other pmsitig sensors in the DHDV, is used to
conduct road sign inventory survey test shown gufé 6. A road loop route near the
research site in Fayetteville, Arkansas is chosertife test. There are 52 signs in all
along the route selected in the experiment. Acsetk?26 signs are shown in Figure 6 due
to space limitation. Image data is collected wbhildDV is driven at 25-45 MPH, largely
following the speed limit on the road. The tramglipath of the survey vehicle is
rectangular in shape per the data gathered with@3eHz IMU. The pins in the Figure 6
indicate the road signs that are automaticallyateteand positioned using the developed
system. The reference positioning coordinates 6 Grmat for all signs are obtained
using a professional level handheld GPS unit withaacuracy of 0.3 meter in planar
positioning. The difference in planar positionipgtween the handheld GPS results and
the results obtained from the ROW imaging systeerbat 8 meters from the dual-camera
configuration and 1-3 meters from the single-cancergiguration.

The results from the single-camera configuratienraore accurate than those from dual-
camera configuration. During the experiment, salvgrarameters are found to be
important to positioning accuracy, some of whichyrhave influenced the outcome.

* The accuracy of the start position (GPS/IMU)

» Calibration of the internal parameters of the caf®rin use (focal length,
position of principal point, pixel size, pixel spag, lens distortion, etc.)

» Calibration of the equipment configuration on thervey vehicle (camera
orientation, distances from positioning system)



» Distance between the camera and the objects tlatbaing measured or
positioned

* The pixel spacing which is related to the zoomiagidrs of the camera

» Synchronization capabilities of the acquisition tegs relative to image and
geographic position data capture

» Timing control of the system clock in the acqu@itisystem, which is used as a
critical control factor along with results of DMInd IMU to determine
longitudinal distance of traveling

For instance, the synchronization of image sequémee both cameras in the dual-
camera configuration may have deteriorated thetipagig accuracy due to timing
control error in the operating system. Anothersias contributing factor is the
spacing of the two cameras may be too short inldkeral direction. A further

improvement of the timing control is needed at kass 1 millisecond accuracy.
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5 Conclusion

In recent years, the need to satisfy various assgtagement requirements prompted
roadway agencies to start collecting various ratelsnanmade structures. Roadway
signs are a primary component of these assets. etawsince the start of using digital
imagery for right-of-way survey in the 1990's, istment through both public and
private sectors in developing automated asset towgerhas stalled in recent years,
despite substantial progresses have been made mutbmation of road sign detection,
recognition, and positioning. This paper representrenewed effort to systematically
design and integrate a real-time system for botjuiation and processing. A working
level hardware system housed in the Digital Highvizmta Vehicle (DHDV) has been
developed and initial versions of calibration andgessing software have been tested.
The accuracy of the developed stereo vision systas) evaluated via a case study by
comparing them to locations measured by a handireldsion GPS receiver. This study
concludes that the proposed stereo vision basesmatgd road sign inventory system
has achieved acceptable accuracy. The ultimateigtadevelop and implement a fully
automated system to conduct sign inventory for thllee objectives: detection,
recognition, and positioning. In the future mordeasive tests shall be conducted on
larger road networks of both interstate highwayd kotal streets. Precision and bias
based on certain benchmarks relating to the thbgectives will need to be established
and studied. Reflectivity and conditions of roaghs need to be evaluated as well. It
should be pointed out that LIDAR technology hasnbegperimented in recent years to
detect presence of signs and other manmade oljecsnear roads. It is envisioned that
in the next few years, several types of fully autited systems may emerge in the market
place for sign inventory. The techniques describettie research may be of significance
to future studies which focus on the detection h# presence of man-made objects
around roadway areas.
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