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Abstract 
Population growth can lead to public school capacity issues, as well as increased school 

bus utilization. This increased utilization, in turn, can result in longer school bus transport times 
for both regular and special needs/medically fragile students. Special needs or medically fragile 
students are children with special health care needs who are at increased risk for a chronic 
physical, developmental, behavioral, or emotional condition. These students require health and 
related services of a type or amount beyond that required by typical children. It is common 
practice to provide special needs students with specially equipped buses and/or special classroom 
environments with specific facilities or services. However, the assignment of student services to 
schools is regularly made without regard to bus transportation considerations for special needs 
students. Considering the potentially negative impact of long school bus rides on these students, 
we present the first systematic, integrated analyses of special needs student busing and classroom 
assignments. We provide models and algorithms for maintaining administration-based 
transportation financial performance measures while simultaneously designing smarter 
transportation networks. The smarter networks produced by our models assign special needs 
services to schools in concert with considering both student geographical location and service 
needs. In the future, we hope to pilot our model results in local school districts to assess the 
efficacy of our proposed methods in practice. 
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1 Introduction 

As urban areas grow in population, some people choose to relocate to the suburbs, often 

for “more space”—to be more spread out across suburban neighborhood areas. One of the main 

public services that is impacted by these city-to-suburb moves are rural public education 

systems. When a school district grows both in terms of its number of schools and its geographic 

area, school capacity limitations and student bus transportation can become important 

challenges. Ineffectively making student-to-school assignments and/or inefficient bus routing 

plans can result in longer school bus rides for students. The magnitude of these inefficiencies is 

further magnified when one considers the transportation of special needs students. 

According to McPherson et al. (1998), special needs or medically fragile students are 

“children with special health care needs…who have or are at increased risk for a chronic 

physical, developmental, behavioral, or emotional condition and who also require health and 

related services of a type or amount beyond that required by children generally.” Given this 

characterization, it follows that longer school bus rides caused by the planning inefficiencies 

described above can adversely impact special needs students. 

Special needs students typically require special buses and/or special classroom 

environments with specific facilities or services. Based on the severity of their physical and 

emotional needs, special needs students are placed into a class containing a specific teacher-to-

student ratio, such as a 1:6 class containing a maximum of six students and one teacher. 

Additionally, 1:10 and 1:15 classrooms are typically found in practice. Students in the latter 

classroom type typically have less or fewer needs for services than do special needs students in 

classrooms with a fewer number of students. 
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In terms of busing, special needs buses often have facilities for picking up and dropping 

off students in wheelchairs. Therefore, not all buses in a school district can be used for special 

needs student transport. In terms of service needs, the special services required by special needs 

students typically are not offered in all schools in a school district—often, they are offered in less 

than one half of the district’s schools. It follows that these limited busing and services options 

can result in one or more special needs student being assigned to a school that is not necessarily 

close to his/her home. Finally, this fact leads to the aforementioned challenge of longer special 

needs student bus transportation times. 

Interviews with school district officials suggest that current practice is for school 

administrators to assign special needs services to district schools based on either experience 

and/or principal requests, often with little or no consideration of where the special needs students 

reside. In one extreme case, we were told about a special needs student who rides her bus two 

hours each way

In this thesis, we investigate this important problem in three phases. First, we develop 

models and algorithms for assigning special needs students to schools such that all required 

special service needs and classroom capacity constraints are satisfied while minimizing the total 

distance all students live from their assigned school. The distances used in Phase 1 of this thesis 

relate to the Euclidean distance between each special needs student’s home and their assigned 

school. Next, we integrate the assignment results from Phase 1 into a vehicle routing model in 

 to and from school, every day. As both the assignment of services and of 

students to schools is somewhat subjective and currently is not supported by any type of 

analytical models in the school districts we investigated, it is quite possible that model-supported 

assignment decisions can help impact current special needs student transportation practices by 

providing better transportation and special needs service assignments for school districts. 
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Phase 2 in order to produce an actual, implementable special needs student bus routing plan that 

minimizes the total amount of time special needs students spend on their school bus each day. 

Given the complexity of the problem under study, we present three heuristics for analyzing this 

challenging problem in Phase 3 of this research effort and assess the efficacy of these decision 

rules on helping to minimize special needs student bus transportation times in practice. 

 

2 Previous Research 

A number of previous research studies investigate both assignment and transportation 

models. Unfortunately, only a small portion of the existing literature focuses on special needs 

students. Further, most special needs student-focused studies either present case study results or 

do not examine transportation-related issues. However, it is important to understand the current 

body of knowledge in order to effectively address the problem under study in this thesis. In the 

sections that follow, we review previous research related both to special needs students and to 

the research problem of interest in this thesis. 

 

2.1. The Assignment Problem 

The assignment problem for special needs students discussed earlier is similar to the 

generalized assignment problem in many ways. Generally, assignment problems can be thought 

of as having a number of agents and a number of tasks. Each agent should be assigned to one 

task under some conditions in order to accomplish some total job with minimal cost/maximal 

value. In the research problem of interest, the agents are special needs students and the tasks are 

available seats or positions in special needs classrooms at district schools of the previously 

defined types (i.e., 1:6, 1:10, or 1:15). 
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Pentico (2007) reviews many of the assignment models available in the literature and 

divides the models into three categories: 1) models with at most one task per agent, 2) models 

with multiple tasks per agent, and 3) multi-dimensional assignment models. Based on this 

classification scheme, the problem under study falls into the first category, at most one task per 

agent (i.e., at most one classroom assignment per special needs student). Further, Pentico (2007) 

divides all problems in this first category into single and multiple criteria problems. 

Among the models he describes, the semi-assignment problem has the greatest similarity 

to the problem under study. In semi-assignment problems, 1) each agent should be assigned to 

exactly one task and 2) there are a limited numbers of task groups, each of which requires some 

number of agents. Clearly, 1) each special needs student must be assigned to a specific classroom 

and 2) special needs classes, which are limited in number across a school district, have a limited 

number of spaces as governed by the needs level. Pentico (2007) states that semi-assignment 

problems can be solved very quickly for large scale problems. 

Lee and Schniederjans (1983) develop an assignment model for assigning teachers to 

schools. They investigate a multi-criteria problem using goal programming for two objectives: 

cost minimization and maximization of preference goals. Teachers express different preferences 

towards working in different schools and these preferences are integrated into the model as an 

objective function. Therefore, a priority is assigned to each goal in the model. Lee and 

Schniederjans (1983) solve the model under different priority ranking schemes and are able to 

find some solution combinations that satisfy a range of stated goals. 

Ferland and Guenette (1990) develop a decision support system for school districts to 

assign groups of students to a school. They develop a student network and use heuristic 

procedures to assign the network’s edges (i.e., students) to schools. In this study, the objective is 
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to assign students to schools such that the total distance cost is minimized (i.e., student-to-school 

proximity is maximized). 

 

2.2. The Transportation Problem 

There exists some previous transportation literature that is related to the general school 

bus routing problem, such as the Vehicle Routing Problem with Pickups and Deliveries 

(VRPPD) and the Dial-A-Ride Problem (DARP). However, the bus routing problem for special 

needs students is different from the general student bus routing problem as special needs students 

often require door-to-door service. It is possible to consider each special needs student’s home as 

an individual bus stop containing a single student. In this section, we overview these two similar 

transportation problem classes, then discuss previous research efforts that investigate topics 

related to special needs student bus routing. 

 

2.2.1. The Vehicle Routing Problem with Pickups and Deliveries 

While the classical Vehicle Routing Problem only considers either pickups or deliveries, 

the VRPPD assumes both pickups and deliveries are able to be performed on the same vehicle 

tour. Nagy and Salhi (2005) develop a heuristic transportation model which addresses both 

pickups and deliveries (i.e., the VRPPD). The main objective of their model is minimizing the 

total distance travelled. The proposed four-step method allows for weak feasibility/infeasibility 

of starting solutions. In each step, the infeasibility of the solution is decreased until a strong, 

feasible solution is produced in the last step which is optimal or near optimal. 

The VRPPD can be extended to include time constraints. In a student transportation 

application, the Vehicle Routing Problem with Pickups and Deliveries and Time Windows 

(VRPPDTW) examines the case when students from different schools with different starting 
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times are on the same school bus. Van Der Bruggen et al. (1993) develop a variable-depth 

algorithm for the VRPPDTW problem with one depot. Their model consists of two phases, 

finding an initial feasible solution (i.e., construction) and improving the solution (i.e., 

improvement). Phase 1’s objective is to minimize solution infeasibility, while Phase 2 focuses on 

minimizing the sum of route durations. 

Ioachim et al. (1995) develop a clustering approach for the VRPPDTW problem. Their 

approach divides all requests into mini-clusters. Their algorithm solves the problem for these 

mini-clusters using a column generation-based approach to improve upon an initial, existing 

solution. The authors also present a heuristic for minimizing the size of the mini-cluster network. 

 

2.2.2. The Dial-A-Ride Problem 

Cordeau (2006) defines the DARP as requests for transportation which are submitted by 

users. This is a typical problem which applies to the transportation of the elderly or disabled 

people in urban areas. Requests are for transportation from a specific origin to a specific 

destination, and transportation is performed by vehicles based at a common depot. Also, time 

windows are specified which bound the arrival and/or departure times deemed acceptable by the 

users. Since service is shared (several users may be in the vehicle at the same time), typical 

objectives are both to minimize user inconveniences (i.e., delays) and to minimize operation 

costs. 

Cordeau and Laporte (2003) develop a Tabu search metaheuristic for the DARP. Their 

algorithm begins with an initial, feasible solution, and then moves to the best solution within the 

current solution’s neighborhood. Neighborhood evaluation is based on minimum route duration 

and minimum ride times. Attanasio et al. (2004) propose a more comprehensive version of Tabu 
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search for DARP that accommodates dynamic model data. It follows that the authors suggest 

their problem can be solved using parallel computing techniques for real-time vehicle routing 

problems. 

Cordeau (2006) introduces a branch-and-cut algorithm and presents valid inequalities for 

the DARP. He shows that the branch-and-cut algorithm is faster and more efficient in terms of 

computer resource needs than existing solution procedures. Although this method cannot be used 

for large-scale problems, it can assess single routes or a small subset of routes in small- and 

medium-sized problem instances. 

 

2.2.3. Special Needs Student Bus Routing 

Russell and Morrel (1986) present one of the only papers to address special needs student 

bus routing. They mention that since students are diverse and each bus route has several 

destinations, the number of schools visited by a given bus tends to be large. They develop a 

shuttle system to reduce the number of schools visited by each bus and therefore, student bus 

riding time. They select two shuttle stations (depots) which are the two district schools with the 

most special needs students. Buses pick up students throughout the district and go to one of the 

two shuttle stations. After students destined for the shuttle station school are dropped off, the 

remaining students are again assigned to buses for subsequent outbound travel. The authors set 

the maximum number of schools visited by each bus to two and for their case, are successful in 

reducing the number of school visits per bus and providing short bus routes. 

Ripplinger (2005) focuses on rural school vehicle routing. Although his main focus is on 

general students, he analyzes special needs student transportation briefly. He provides models 

and analysis for two alternatives: separating special needs student transportation from general 
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students and generating single routes for both types of students. Braca et al. (1997) briefly 

mention special needs students in one part of their research. Their main focus is on the New 

York school bus system. The authors describe the difference between special needs students and 

general students, but did not develop any pertinent or applicable transportation models for the 

research problem under study. 

 

3 Research Overview 

3.1. Problem Statement 

Our review of the published literature to date reveals very little previous research on 

special needs student transportation and no previous work focused on the research problem under 

study in this thesis: minimizing the total time (distance) special needs students travel from/to 

their residence to/from school through effective modeling and analysis of student-to-school 

assignment and bus (vehicle) routing. As our research problem contains many important 

decisions to be made, we employ a phased research approach as described above that contains 

two important subproblems: 

1. The student-to-school assignment problem (Phase 1) 
2. The student transportation/bus routing problem (Phase 2) 

 

3.2. Research Plan 

In the student-to-school assignment problem, students are assigned to district schools 

having some known classroom services and capacities such that total student-to-school distance 

is minimized. For this purpose, we will use existing service/classroom assignments in a local 

school district. We use distance as a surrogate measure for student bus riding time, because in 

Phase 1, the direct distance between each student’s home and his/her school will be used in the 
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model without any consideration of bus routing. Even though vehicle routing is not included in 

Phase 1, the result of this phase can estimate how much improvement may be possible under 

“smarter” assignment decisions. 

The focus of our Phase 2 research will be on transportation and vehicle routing. As was 

the case with Phase 1, the current assignment of special needs services-to-school is used as input 

to the Phase 2 model. However, in Phase 2, we seek to simultaneously optimize student-to-

school assignments (i.e., Phase 1) and bus routing plans such that total student travel time (i.e., 

on-the-road distance) is minimized. Finally, given the complexity of the problem under study, it 

will be necessary to develop and test heuristic solution approaches for the research problem 

under study. 

All mathematical models developed in this thesis research will be coded in AMPL and 

solved using CPLEX’s mixed-integer programming solver. We will first validate each 

mathematical model with a variety of small, trivial sample problems that are easily solved by 

hand. Once model functionality is verified, we will use real world information furnished by our 

project sponsor, the Fort Smith Public School (FSPS) district, as a means of analyzing each 

model’s computational performance and solution quality under real world school district 

conditions. In addition, the heuristic solution methods developed in this thesis will all be verified 

and validated in similar manner. 

 

3.3. Research Contribution 

In this thesis research, we conduct what we believe to be the first systematic, analytical 

study of special needs student busing and produce models and algorithms to aid decision makers 

with this challenging, practically motivated problem. We develop the first monolithic solution 
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approach for helping public school systems effectively 1) assign special needs students and their 

associated services to schools and 2) route transportation resources. 

In addition to examining current special needs service-to-school assignment, our 

sensitivity analyses examine the impact of a school district’s flexibility (or lack thereof) in 

making special needs service-to-school assignments, both in terms of the number of classes of 

each service type at each school and the specific district schools which can accommodate special 

needs students. We believe that both the sensitivity analysis and Phase 2 results have the 

potential to be used directly in practice, as all practical constraints will be incorporated into our 

models, including bus and classroom capacities and classroom service classifications. 

 

4 Model and Solution Procedure Development 

In this section, we present the mathematical models and heuristic solution approaches 

that were developed to analyze the challenging research problem under study. After initial model 

development, each solution approach was verified via manual calculations to ensure its accuracy 

and validity. After presenting all solution approaches used in this thesis research, we will present 

our experimental studies and results for this thesis research. 

 

4.1. Phase 1 Assignment Model 

The assignment model developed in Phase 1 is a mixed-integer model formulated to 

minimize the total direct distance that all students would travel in a straight line (without any 

regard to routing) from each of their houses to reach their school. First, we introduce the 

following set notation: 
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𝑆 Set of schools, indexed by i 
𝑇 Set of students, indexed by j 
𝐶 Set of class (service) types, indexed by k 
L Set of school levels, indexed by l 
 

In addition, we need to define six parameters for use in our Phase 1 model: 

𝑛𝑘 Maximum number of students which can attend class type k 
𝑑𝑖,𝑗 Distance from student j place of residence to school i (miles) 
𝑔𝑗,𝑘 1 if student j requires class/service type k, otherwise 0 
𝑎𝑖,𝑘 Number of classes of type k available in school i 
𝑒𝑗,𝑙 1 if student i should go to school level of l, otherwise 0 
𝑏𝑖,𝑙 1 if level of school i is l, otherwise 0 
 

The Phase 1 assignment model determines the student-to-school assignments that 

minimize the total direct distance between student homes and their schools. This decision is 

captured via the decision variable 𝑥𝑖,𝑗 which equals 1 if student j is assigned to school i, 

otherwise, 𝑥𝑖,𝑗 =0. Since it is possible that all currently available classes at a given school may 

not be used in any given assignment scheme recommended by the model, we define an additional 

integer bookkeeping variable to count the number of students assigned to a specific class (and its 

associated service type) at each school. Let 𝑦𝑖,𝑘 denote the number of students assigned to 

class/service type k in school i. 

Given this notation, we now present our preliminary model. We seek to minimize total 

direct distance (in miles) that students travel to their school. Based on the sets, parameters, and 

variables defined above, our objective function is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑥𝑖,𝑗𝑑𝑖,𝑗 + 10−9 ∑ ∑ 𝑦𝑖,𝑘𝑘𝑖𝑗𝑖  (1) 

The second term in (1) insures that bookkeeping variable 𝑦𝑖,𝑘  does not become unnecessarily 

inflated, as we scale the sum of all bookkeeping variables by a very small constant. In this way, 
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we make sure that the second objective function term does not adversely affect the first, primary 

objective function term of interest. 

We now define the sets of constraints that must be satisfied by any feasible solution to 

our assignment model. Constraint set (2) requires that each student be assigned to exactly one 

school: 

∑ 𝑥𝑖,𝑗𝑖 = 1 𝑗 ∈ 𝑇 (2) 

Constraint set (3) verifies that each student is assigned to a school that offers his/her needed 

class/service type (recall our service types relate to teacher to student ratio, such as 1:6, 1:10, and 

1:15): 

𝑥𝑖,𝑗×𝑔𝑗,𝑘 ≤ 𝑎𝑖,𝑘 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇, 𝑘 ∈ 𝐶 (3) 

Constraint set (4) guarantees that number of students assigned to each class type at any school 

does not exceed the class’s available capacity: 

∑ ≤
j

kkikjji nagx ,,,  CkSi ∈∈ ,  (4) 

Next, constraint set (5) insures that the each student is assigned to a school of his/her 

appropriate level. For example, elementary school students should only be assigned to 

elementary schools. This constraint is important to include in the case where students of a wide 

range of ages destined for different special needs schools ride the same bus: 

liljji bex ,,, ≤  LlTjSi ∈∈∈ ,,  (5) 

Finally, constraint set (6) is a valid inequality we introduce to update the bookkeeping variable 

𝑦𝑖,𝑘 according to the values of our primary decision variable of interest, 𝑥𝑖,𝑗: 

∑ ≤
j

kikjji ygx ,,,  CkSi ∈∈ ,  (6) 
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4.2. Phase 2 Vehicle Routing Model 

The vehicle routing problem (VRP) model developed for Phase 2 of this research is now 

presented. It is a mixed-integer programming model that minimizes the total travel distance 

driven by all the buses when picking up all special needs students and delivering them to their 

intended school destinations. In the interest of improved tractability, we formulate this problem 

using a network-based approach in which students and schools are considered to be nodes and 

the different routes between students and schools are captured via arcs. Buses start their travel in 

the network from an origin node which represents a depot. Similarly, each bus’s travel is deemed 

complete once they return to the depot after marking all of their appropriate student drop-offs. 

As mentioned earlier, the Phase 1 assignment model presented in the previous section 

recommends the optimal assignment of students to schools, based on their service needs. This 

Phase 1 model output will, in turn, be used as an input parameter in the Phase 2 model. Based on 

the given description, we define five sets for our Phase 2 model: 

S Set of schools, indexed by i and j 
T Set of students, indexed by i and j 
D Set of depots, indexed by i and j 
N Set of nodes, which is union of S, T, and D, indexed by i and j 
B Set of buses, indexed by k 

In addition, the following parameters are defined for use in our Phase 2 routing model: 

dij Distance from node i to node j 
ck Capacity of bus k 
aij 1 if student i is assigned to school j, 0 otherwise 

The Phase 2 model specifies the special needs bus routes that minimize the total distance 

traveled by all buses while delivering students to their destination schools. This model output 

prescribes the order in which 1) students should be picked up and 2) schools should be visited for 

student drop-off by each bus used in the transportation plan. 
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The primary decision variable in our Phase 2 model is xijk, which equals 1 if node i is 

immediately followed by node j on bus route k, otherwise xijk = 0. In order to formulate the 

model, some bookkeeping variables are required. First, we introduce bookkeeping variable yik to 

record which student is served by which bus: yik = 1 if student i is served by bus k; otherwise, yik 

= 0. Bookkeeping variable zik is similar to yik, but keeps track of which school is visited by which 

bus: zik = 1 if school i is visited by bus k; otherwise, zik = 0. Finally, bookkeeping variable wik 

shows the position of each node on each bus route. For example, if student A is the third student 

visited by bus Z and bus Z has not visited any schools yet, then wAZ = 4, as the bus depot is 

always the first node to be visited by any bus. In addition to keeping track of the position of the 

nodes visited by each bus, bookkeeping variable wik also serves the purpose of eliminating any 

possible sub-tours traveled by each bus. 

We now formally state our Phase 2 model. Given our goal of minimizing the total 

distance traveled by all buses, the objective function for the Phase 2 vehicle routing model is as 

follows: 

∑∑∑∑∑
∈ ∈∈ ∈ ∈

+
Ni Bk

ik
Nj Bk

ijkij w
M

xdMinimize 1 
Ni

  (7) 

Objective function (7) has two terms. The first term models the primary objective of minimizing 

the total distance traveled by all buses, while the second term makes sure that bookkeeping 

variable wik is not unnecessarily inflated. Similar to our Phase 1 approach, we use a very small 

constant multiplier on our second objective function term so as to not adversely impact the value 

of the overall objective function. 

Next, we introduce the constraint sets required in our Phase 2 model. Constraint set (8) 

forces each bus to visit exactly one node immediately after visiting a student node. This is 

necessary, as it is not possible to pick up a student at the end of a bus’s routing plan travel—at a 
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minimum, this student must be delivered to his/her school. Therefore, it follows that there should 

be either another student or a school visited after any student visit: 

1=∑∑
∈ ∈Nj Bk

ijkx  Ti∈  (8) 

Constraint set (9) makes sure that exactly one node is visited before each student visit. This 

constraint, in concert with constraint set (8), forces each student home to be visited once, with 

exactly one arc going into and exactly one arc going out of each student node: 

1=∑∑
∈ ∈Ni Bk

ijkx  Tj∈  (9) 

Constraint set (10) guarantees that there is at least one student visited before any school is 

visited. This insures that a school is not the first place to be visited in any bus route, as there 

would be no students onboard to be dropped off at the school. It should be noted that this 

constraint set allows more than one bus to visit each school: 

1≥∑∑
∈ ∈Ni Bk

ijkx  Sj∈  (10) 

Constraint set (11) insures that at most one node is visited immediately after each school visit by 

any bus. The visited node can be either a student node, another school node, or the final depot 

destination node when all the students are dropped off: 

1≤∑
∈Nj

ijkx  BkSi ∈∈ ,  (11) 

Constraint set (12) makes sure that capacity of each bus is not exceeded: 

k
Ti Nj

ijk cx ≤∑∑
∈ ∈

 Bk ∈  (12) 

Constraint sets (13) and (14) are valid equalities that update bookkeeping variable yik by relating 

it to the main decision variable, xijk: 
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ik
Nj

ijk yx =∑
∈

 BkTi ∈∈ ,  (13) 

ik
Nj

jik yx =∑
∈

 BkTi ∈∈ ,  (14) 

Constraint set (15) forces all buses to start their daily trips from the origin depot node: 

1=∑∑
∈ ∈Di Tj

ijkx  Bk ∈  (15) 

Constraint set (16) insures all buses end their daily trips at the depot: 

1=∑∑
∈ ∈Si Dj

ijkx  Bk ∈  (16) 

Constraint set (17) guarantees that no bus goes directly from the depot to a school, as no 

student(s) would have been picked up: 

0=∑∑
∈ ∈Sj Bk

ijkx  Di∈  (17) 

Constraint set (18) verifies that no bus goes directly from a student node to the depot, as no 

school drop-off would have occurred: 

0=∑∑
∈ ∈Ti Bk

ijkx  Dj∈  (18) 

Constraint sets (19) and (20) update bookkeeping variable zik by relating it to the main decision 

variable xijk: 

ik
Nj

ijk zx =∑
∈

 BkSi ∈∈ ,  (19) 

ik
Nj

jik zx =∑
∈

 BkSi ∈∈ ,  (20) 

Next, constraint set (21) makes sure that each student is picked up by a bus that visits 

his/her assigned school. This is one of the constraint sets that make use of the results from our 

Phase 1 assignment model: 
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ikjkij zya ≤  BkTjSi ∈∈∈ ,,  (21) 

Constraint set (22) ensures that there is no return travel from a node to back itself: 

0=iikx  BkNi ∈∈ ,  (22) 

Constraint set (23) sets bookkeeping variable zik for the origin depot node = 1, thereby forcing 

the depot to be the first node visited by each bus: 

1=ikw  BkDi ∈∈ ,  (23) 

Constraint sets (24) and (25) update bookkeeping variable wik and together, disallow sub-tours in 

the Phase 2 routing model. Constraint set (25) guarantees that students are picked up by a bus 

before that same bus visits their destination school: 

Mxww jikjkik *)1(1 −−+≥  BkNjTSi ∈∈∈ ,,  (24) 

jkikji wwa ≤  BkSjTi ∈∈∈ ,,  (25) 

Finally, constraint set (26) is another valid inequality that insures no student is on a bus that does 

not visit his/her destination school. 

ik
Tj

jkij zya ≥∑
∈

 BkSi ∈∈ ,  (26) 

 

4.3. Heuristic Solution Methodologies 

Given the well-established NP-hard complexity of vehicle routing models containing 

only a single vehicle (Nagy and Salhi, 2005), large, practically-motivated real world problem 

instances for the research problem under study will be unsolvable in any practical amount of 

computation time. Therefore, we now turn our focus to the development of (hopefully) 

practically implementable heuristic solution methods. First, we present a constructive heuristic 

based on a greedy approach that generates feasible solutions quickly. Next, we introduce two 
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local search-based post-processing techniques designed to improve the constructive heuristic’s 

initial solution. 

 

4.3.1. Greedy Heuristic 

We employ the greedy procedure InitialSolution below to construct an initial, feasible 

solution to the problem under study in our heuristic Greedy. This procedure requires the 

following group of input parameters: 1) number of students, 2) number of schools, 3) number of 

buses, 4) bus capacities, 5) from/to straight line distance matrix between all pairs of students and 

schools, and 6) the existing list of student-to-school assignments. By assuming that all buses start 

their respective trips from the depot, following the procedure below guarantees the creation of a 

feasible solution, as first, all students are assigned to buses, and then each bus is required to visit 

all required schools for student drop-off. 

Procedure InitialSolution 
1. MAIN STUDENT ASSIGNMENT LOOP: 

a. Let S denote the set of all current students assigned to a school.  Initially, S is empty. 
b. Let S’ denote all current students not yet assigned to a school.  Initially, S’ contains all 

students. 
c. Let Nb denote the last visited network node of bus b.  Initially, Nb is set to the depot for 

all buses. 
d. If S’ is empty, go to Step 2.  Otherwise, 

i. Find the student s in S’ that lives closest to any node Nb (the current location of each 
bus b) for each bus b that has remaining capacity to take on more students. 

ii. Assign student s to bus b.  Update Nb to reflect the network node associated with 
student s’s house.  Remove s from S’.  Add s to S.  Go to Step 1d. 

2. MAIN BUS ASSIGNMENT LOOP: 
a. For each bus, determine the schools which need to be visited for dropping off each 

student assigned to the bus.  Let Db denote the set of destination schools to be visited by 
bus b.  Initially, Db contains all schools attended by the students on bus b. 

b. If Db is empty for all buses, STOP.  Otherwise, 
i. Find the school e in Db that is closest to any node Nb (the current location of each 

bus b) for each bus b. 
ii. Assign bus b to travel to school e by updating Nb to reflect the network node 

associated with school e.  Remove e from Db.  Go to Step 2b. 
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Procedure InitialSolution produces two main outputs:  the total distance traveled by all 

buses and the order in which nodes are visited by each bus. Consider an example problem 

containing seven students (labeled “1”, “2”, etc.), two schools (“A” and “B”), and three buses 

(labeled route “1”, “2”, and “3”). Table 1 displays an example set of output from the procedure 

in which each bus begins at origin O. Next, all seven students are picked up, and then 

subsequently delivered to their destination schools (note that only route 1 is required to visit both 

schools A and B). 

 

Table 1: Sample Output of Constructive Heuristic 

Route Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 
1 O 1 2 5 B A 
2 O 7 6 A   
3 O 4 3 B   

 

It is quite possible that procedure InitialSolution might produce inefficient solutions in terms of 

minimum total student distances to the assigned schools, given its greedy approach. It is this 

reality that leads us to the following improvement methods in our heuristic development. 

 

4.3.2. Improving the Greedy Solution 

Next, we seek to improve our initial, greedy solution by focusing on 1) the way students 

are assigned to buses from the unassigned student pool S’ and 2) the placement of school visits in 

the bus route. In procedure InitialSolution, a student is added to each bus during every iteration 

of 1d in the main student assignment loop. Now, instead of simultaneously assigning students to 

every bus during the main assignment loop, we will assign students to only one single bus at a 

time. When the number of students on the bus reaches capacity, the bus is removed from further 

consideration and the next empty bus is used for student assignment. 
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Considering the main bus assignment loop in procedure InitialSolution, we also seek to 

improve the placement of school visits on each bus’s route. In the greedy heuristic, schools are 

visited at the end of each bus’s route, regardless of when and where the last student is picked 

up—this could lead to a missed opportunity for earlier student drop-off. For example, consider 

the case of 20 students and two schools (A and B) being served by a single bus. If only three 

students are destined for school A, and these same students are picked up at the beginning of the 

route, there might be a chance that school A can be visited at some point earlier in the route in a 

way that reduces the total distance traveled. In order to identify this opportunity, we perform an 

additional step after assigning all students to schools which identifies the earliest position that 

each school can be assigned in each bus’s route. Then, when performing the main bus 

assignment loop, we can assess school placement in each bus route from this earliest point to the 

end of the bus’s route. The two improvement steps are included in our first improvement 

heuristic, IH1. 

 

4.3.3. A Potential Issue with IH1 

Preliminary experiments uncovered a potential issue with IH1. Consider a problem 

instance of 21 students and two buses, each with capacity for 20 students. Our IH1 would assign 

the first 20 students to the first bus and then, as this bus is at capacity, would put the last 

remaining student on the second bus. While logically there is no problem with this assignment, it 

is practically not attractive or reasonable. To address this potential problem, we consider 

different combinations of assigning students to buses by establishing and analyzing temporary 

bus capacities. Consider a problem instance containing n students and b buses. While we keep 

the upper bound on bus capacity at 20 (its true value), we set a lower bound bus capacity value of 
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�𝑛 𝑏� � and analyze the same problem for all bus capacity values from �𝑛 𝑏� � up to 20. For 

example, in the case n = 21 students and b = 2 buses, we now examine temporary bus capacities 

from 11 to 20 in our second improvement heuristic, IH2. In IH2, we solve each problem for all 

valid temporary bus capacity values and select the solution with the lowest objective function 

value. 

Finally, we perform a local search operation in IH2 after the best heuristic solution is 

found. We post-process this “best” IH2 solution via adjacent pairwise interchanges within each 

bus’s route to see if an improved (i.e., less distance), feasible solution exists. The interchanges 

are made starting from the head of each bus’s route, after the depot visit. We insure feasibility is 

maintained such that all students can still be delivered to their proper destination school. Finally, 

the “best” overall routing plan identified is reported once heuristic IH2 terminates. 

 

5 Experimental Results and Analyses 

As mentioned previously, all mathematical models and heuristic solution approaches 

developed in this thesis were verified for proper functionality and calculations using small, trivial 

problem instances with solutions that could be verified manually. Now, we use the following set 

of experimental factors and their associated levels to analyze the performance of our competing 

solution approaches for the special needs busing problem under study: 

• Number of buses (3 levels): 2, 3, 4 
• Number of special needs students (3 levels): 20, 40, 60 
• Number of special needs schools (3 levels): 2, 4, 6 
• School district area (2 levels): 10 miles x 10 miles, 20 miles x 20 miles 
• Bus capacity (1 level): 20 students 

 

These values for our experimental design were verified by our research sponsor to be valid in 

terms of typical school district size and complexity with regards to special needs student busing. 



22 
 

In each problem instance, student home and school locations are randomly generated 

within the corresponding school district area. Given this random component of our experimental 

design, we generate 10 problem instances for each of the factor combinations—this results in a 

total of 540 problem instances. However, close inspection reveals that 60 of these instances are 

infeasible: the cases wherein 60 students are to be bused with only two buses of capacity 20. As 

we will focus only on feasible problem instances, a total of 480 feasible instances remain for 

analysis by our optimization models and heuristic solution methods. 

As mentioned previously, our Phase 1 assignment model solves quickly and optimally for 

all cases, due to its structure. Therefore, we present results below pertaining to the more complex 

optimization model, our Phase 2 vehicle routing model. This is appropriate in that the Phase 1 

model’s outputs are used as input in the Phase 2 model and it is the Phase 2 model that lends 

itself to direct comparison with our heuristic solution methodologies. 

 

5.1. Phase 2 Vehicle Routing Model Results 

We implemented the Phase 2 model in AMPL and analyzed it using CPLEX on a 2.93 

GHz quad core, quad processor server with 128 GB of RAM. We set a maximum model run time 

limit of one hour and analyzed each of the 480 test instances. In terms of required solution time, 

while some instances solved to optimality in less than one minute, CPLEX could not find any 

solution to some other instances in one hour. Table 2 shows a summary of the overall CPLEX 

results. 

 

Table 2: Overall Status of CPLEX Results 

CPLEX Solution Type Optimal Time Limit No Solution 
Number 121 241 118 
Percentage 25.21% 50.21% 24.58% 
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Results from Table 2 confirm the need for a reliable, fast heuristic. Almost 75% of the 

problem instances were not solved to optimality within the 60 minute time limit. In addition, 

CPLEX could not produce any solution for almost 25% of the instances. However, for the cases 

in which CPLEX could find a solution, the average gap between CPLEX’s best solution and the 

problem’s lower bound (i.e., the optimality gap) is 23.6%. The summary results in Table 2 are 

further broken down by experimental factor level in Table 3. 

 

Table 3: Analysis of the Solutions of the Test Problem using CPLEX 

 Instance 
CPLEX 

Optimal Time 
Limit 

No 
Solution 

Number of 
Buses 

2 46 74 0 
3 41 90 49 
4 34 77 69 

Number of 
Students 

20 121 59 0 
40 0 154 26 
60 0 28 92 

Number of 
Schools 

2 57 90 13 
4 43 72 45 
6 21 79 60 

District 
Area 

10x10 67 116 57 
20x20 54 125 61 

 

Table 3 confirms that increasing either the number of buses, students, and/or schools 

makes the problem under study more difficult to solve. It appears that the number of students has 

the biggest effect on CPLEX’s ability to achieve optimal solutions. While 67% of the solutions 

are optimal in the 20 student case, CPLEX found no optimal solutions for the 40 and 60 student 

cases. In fact, 77% of the 60 student cases resulted in no solution after the one hour time limit 

had elapsed. However, school district area has little to no effect on solution optimality. Again, 
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these results confirm the need for our heuristic solution methodology, given the complexity of 

the problem under study. 

 

5.2. Heuristic Solution Results 

All three heuristics (Greedy, IH1, and IH2) were coded in C# using Microsoft Visual 

Studio. Each heuristic easily solved every one of the 480 test instances in less than five seconds, 

which compares favorably to the optimization model’s 60 minute maximum solution time (not to 

mention that the optimization model some times did not produce any feasible solution within this 

one hour time limit). We must assess the quality of our heuristic solutions as compared to the 

optimization model in order to determine whether they implementation in practice is justifiable. 

Let PR(H,I) be the performance ratio computed by dividing the problem instance solution 

produced by heuristic H for problem instance I by the solution produced by the Phase 2 

optimization model for the same problem instance. Table 4 displays both the average and 

standard deviation of the PR ratios for each heuristic across the experimental design space. The 

results are separated according to whether or not the optimization model was able to produce the 

optimal solution or if the one hour time limit was reached. 
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Table 4: Comparison of Performance Ratios for Heuristic Methods 

 
IH2 IH1 Greedy 

Optimal  Time Limit  Optimal  Time Limit  Optimal  Time Limit  
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

2 buses 1.20 0.09 1.01 0.14 1.27 0.10 1.07 0.16 1.68 0.26 1.37 0.19 
3 buses 1.43 0.13 1.14 0.23 1.58 0.15 1.22 0.27 1.91 0.33 1.51 0.33 
4 buses 1.53 0.16 1.29 0.27 1.67 0.23 1.43 0.33 2.08 0.40 1.78 0.42 
20 stds 1.37 0.19 1.41 0.19 1.49 0.24 1.59 0.25 1.87 0.37 1.95 0.31 
40 stds - - 1.11 0.18 - - 1.18 0.18 - - 1.49 0.25 
60 stds - - 0.80 0.09 - - 0.82 0.10 - - 1.07 0.13 

2 schools 1.35 0.16 1.11 0.24 1.42 0.19 1.15 0.25 1.71 0.32 1.44 0.33 
4 schools 1.40 0.20 1.16 0.22 1.55 0.27 1.25 0.27 1.99 0.37 1.57 0.30 
6 schools 1.38 0.22 1.19 0.26 1.54 0.25 1.34 0.34 2.05 0.29 1.67 0.42 
100 sq mi 1.37 0.18 1.14 0.25 1.48 0.23 1.22 0.29 1.82 0.32 1.53 0.37 
400 sq mi 1.38 0.19 1.16 0.25 1.50 0.25 1.25 0.30 1.93 0.41 1.57 0.37 
Overall 1.37 0.19 1.15 0.25 1.49 0.24 1.24 0.30 1.87 0.37 1.55 0.37 

 

The overall performance ratio of the original Greedy constructive heuristic is 1.87 for the 

cases in which the Phase 2 vehicle routing model gave optimal solution. This ratio improves to 

1.49 for IH1 and 1.37 for IH2. This trend confirms that the proposed improvements to the 

original constructive heuristic help to produce better solutions. In the cases where CPLEX found 

a solution but not the optimal solution, all three heuristics again show superior performance as 

expected. Table 5 presents the 95% confidence intervals for each of the sets of heuristic results 

described in Table 4. 

 

  



26 
 

Table 5: Performance Ratio 95% Confidence Intervals 

 IH2 IH1 Greedy 
 Optimal  Time Limit  Optimal  Time Limit  Optimal  Time Limit  
 5% 95% 5% 95% 5% 95% 5% 95% 5% 95% 5% 95% 

2 buses 1.05 1.35 0.78 1.24 1.11 1.43 0.81 1.33 1.25 2.11 1.06 1.68 
3 buses 1.22 1.64 0.76 1.52 1.33 1.83 0.78 1.66 1.37 2.45 0.97 2.05 
4 buses 1.27 1.79 0.85 1.73 1.29 2.05 0.89 1.97 1.42 2.74 1.09 2.47 
20 stds 1.06 1.68 1.10 1.72 1.10 1.88 1.18 2.00 1.26 2.48 1.44 2.46 
40 stds - - 0.81 1.41 - - 0.88 1.48 - - 1.08 1.90 
60 stds - - 0.65 0.95 - - 0.66 0.98 - - 0.86 1.28 

2 schools 1.09 1.61 0.72 1.50 1.11 1.73 0.74 1.56 1.18 2.24 0.90 1.98 
4 schools 1.07 1.73 0.80 1.52 1.11 1.99 0.81 1.69 1.38 2.60 1.08 2.06 
6 schools 1.02 1.74 0.76 1.62 1.13 1.95 0.78 1.90 1.57 2.53 0.98 2.36 
100 sq mi 1.07 1.67 0.73 1.55 1.10 1.86 0.74 1.70 1.29 2.35 0.92 2.14 
400 sq mi 1.07 1.69 0.75 1.57 1.09 1.91 0.76 1.74 1.26 2.60 0.96 2.18 
Overall 1.06 1.68 0.74 1.56 1.10 1.88 0.75 1.73 1.26 2.48 0.94 2.16 

 

It is interesting to observe how increasing the number of students affects heuristic 

solution performance. While this increase negatively impacts our Phase 2 vehicle routing 

model’s performance, it improves the performance of each heuristic. However, increasing the 

number of buses or the number of schools slightly decreases heuristic performance. Finally, as 

was the case with the optimization model, school district area has no noticeable effect on our 

performance ratios. Overall, our results tables confirm that IH2 produces the best overall 

performance. Based on these findings, we now turn our final research efforts to investigating a 

real world case study of a local school district to assess the ability of our heuristics to perform 

well in practice. 

 

6 Fort Smith Public Schools (FSPS) Case Study 

Fort Smith is the second largest city in Arkansas and has a population of approximately 

100,000 people. Fort Smith is approximately 53 square miles in area and is located on the border 

of Arkansas and Oklahoma. Currently, nine Fort Smith schools serve 111 special needs students 
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(Figure 1). There are three types of classes/service levels with different capacities offered for 

special needs students in Fort Smith: 1:6, 1:10, and 1:15 teacher to student ratios. Further, there 

exist three levels of schools which offer services to special needs students in Fort Smith: 

elementary, junior high, and senior high school. 

 

Figure 1: Fort Smith Schools Currently Accommodating Special Needs Students 

 

After gathering all pertinent data from FSPS personnel for our models, we converted the 

data into an appropriate format for each of our solution methodologies. One of the big challenges 

during our data collection process was the determination of all possible travel distances between 

students and schools. This was accomplished by writing programming code to interface with 

Google Maps’ API, thereby alleviating the need to capture all of this information manually. This 

distance information was then properly formatted for inclusion into the experimental data files. 
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6.1. Phase 1 Assignment Model Results 

Our Phase 1 assignment model was used to ascertain the total distance between special 

needs student homes and their currently assigned schools in Fort Smith in order to make future 

comparisons to some known, existing baseline. This calculation resulted in a total of 467.2 miles 

of direct distance for the current FSPS solution of today. Again, this distance does not account 

for bus routing. To further describe the current conditions, Table 6 shows the number of students 

currently assigned to each class type in each FSPS school today (i.e., our baseline case). School 

names have been changed to numbers for ease of reference. 

 

Table 6: Current Special Needs Student Assignments in FSPS by Class Type 
School 1:6 1:10 1:15 

1  3  
2  1  
3 9 6 34 
4  3  
5 3 8 7 
6 6 24  
7  1  
8  1  
9  5  

Total 18 52 41 
Three different scenarios were investigated with the Phase 1 assignment model: 

• Case 1: The current, baseline conditions in FSPS with respect to the number of available 
classes of each type in each school 

• Case 2: We assume an infinite number of classes are available at each school, but the 
type of classes that each school can offer mirrors the current conditions in FSPS. 

• Case 3: We assume both an infinite number of classes are available at each school and 
that all schools are allowed to offer all types of classes. 

 

Analyzing Case 1 will help to assess the optimality of the current FSPS student assignments in 

terms of direct distance measurements or student-to-school proximity. Similarly, analyzing Cases 

2 and 3 will reveal how much improvement may be possible if either the number of special needs 
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classes or special needs class type restrictions are relaxed along with the number of classes 

available, respectively. Table 7 displays the results from Phase 1 assignment model runs for Case 

1. 

 

Table 7: Optimal Case 1 FSPS Student Assignment for Directed Student Distance 
School 1:6 1:10 1:15 

1  1  
2  3  
3 9 4 34 
4  10  
5 3 6 7 
6 6 17  
7  1  
8  2  
9  8  

Total 18 52 41 
 

Using the assignment model to make student-to-school assignments, the total directed 

distance between student residences and their school is reduced by 13.2%, from 467.2 to 405.7 

miles. (Although not directly tied to bus routing, it is important to note that this reduction would 

occur both for student transport to school and back home). If a similar amount of mileage 

savings (in terms of percentage) can be realized from our bus routing analysis, this would prove 

to be a significant savings for FSPS. 

Upon comparing the results in Table 7 to the original Table 6 baseline case, the only 

changes that occurred were for 1:10 classes. Therefore, it appears that under the current service 

assignment and capacities, FSPS has optimally assigned both 1:6 and 1:15 classes in terms of 

directed student distance to their respective schools. However, student assignments for the 1:10 

classes change in nine out of the possible 10 schools with no need to increase the number of 

teachers or classes. 
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Table 8 presents the CPLEX results for Case 2 wherein the number of available classes is 

assumed to be infinite, but existing school-to-class type restrictions are still enforced. Case 2 

results reveal a 15.5% savings in total directed distance as compared to the baseline. Case 2 

resulted in approximately 11 less directed miles as compared to Case 1 due to changes associated 

with schools 4 and 6, as seven students changed their school assignment from school 6 to school 

4 under Case 2. Finally, Case 3 results (Table 9) reveal a total directed distance of 261.2 miles. 

However, this “ideal” case would be quite difficult to implement in reality, given the number of 

required changes that would need to be made in the current system. Under these optimal Case 3 

results, almost every school is required to provide all three types of services—an unlikely reality 

given budget, teacher, and space constraints. 

 

Table 8: Optimal Case 2 FSPS Student Assignment for Directed Student Distance 
School 1:6 1:10 1:15 

1  1  
2  3  
3 9 4 34 
4  17  
5 3 6 7 
6 6 10  
7  1  
8  2  
9  8  

Total 18 52 41 
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Table 9: Optimal Case 3 FSPS Student Assignment for Directed Student Distance 
School 1:6 1:10 1:15 

1 2 1 7 
2 2 3 5 
3 3 4 9 
4  17  
5 1 6 2 
6 6 10  
7 1 1 6 
8 1 2  
9 2 8 12 

Total 18 52 41 
 

6.2. Phase 2 Vehicle Routing Model Results 

We now seek to produce a practical solution for implementation in practice by creating a 

bus routing strategy to accompany our assignment decisions. The FSPS-supplied data for our 

Phase 1 case study is used again in this portion of our experimentation. Based on FSPS’s stated 

bus capacity of 20 special needs students per bus on average, we assume this value for all buses. 

Student-to-school assignment data is obtained from the results of our Phase 1 assignment model. 

One important consideration is that because our Phase 2 vehicle routing model forces all 

available buses to be used in its solution, we choose to examine each problem instance with 

varying numbers of available buses. For this case study, no maximum CPLEX solution time limit 

is specified. Therefore, the solution process finishes either by finding the optimal solution or by 

exceeding the memory resources available to CPLEX. Results of the Phase 2 model for our FSPS 

case study are shown in Table 10 by type of school in terms of distance traveled, optimality gap, 

and model computation time. 
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Table 10: Phase 2 Optimization Model Results for FSPS Case Study 

Level # of 
Buses 

Distance 
Traveled (mi) Optimality / Gap Solve Time (s) 

Junior 
High 

School 

1 36.9 Optimal 3.6 
2 33.3 Optimal 2.1 
3 33.0 Optimal 6.0 
4 34.0 Optimal 114.7 

Senior 
High 

School 

2 50.5 22.7% 6,036.2 
3 44.2 13.7% 10,697.0 
4 45.8 15.7% 8,149.4 
5 50.5 24.7% 13,758.3 

Elementary 
School 

3 100.6 53.6% 11,596.3 
4 127.0 67.7% 15,379.8 
5 - - - 
6 - - - 

 

As expected, the cases with fewer buses were solved optimally in a short amount of time. 

But as instance size grows, more time is required to solve the problem—this results in even 

poorer solution quality. This is evident when one considers that all junior high instances were 

solved optimally. In the junior high cases, 19 students are assigned to two schools. Although 

increasing the number of buses increases model solution time, all results for the junior high cases 

are optimal. 

None of the senior high cases, which each contain 33 students and two schools, were 

solved to optimality. Although the average optimality gap is approximately 20%, the required 

model solve time is much larger than that of the junior high instances. This example 

demonstrates how a small increase in problem size can affect solution times exponentially in NP-

hard problems. Finally, the elementary school cases with 59 students and five schools were not 

easily analyzed by the Phase 2 optimization model. 

Table 10 results suggest the optimal busing strategy for different school levels. However, 

practical considerations such as the available number of buses and bus drivers must be assessed 

in practice to see if these solutions can be implemented. Often, a small difference in total miles 
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can be taken on in order to save requiring an additional bus. For example, while junior high 

results suggest three buses is best, an entire bus can be saved for the cost of only 0.3 additional 

miles each morning and afternoon.  However, length of bus ride should also be analyzed for 

these recommended solutions as clear tradeoffs may exist between the available options. 

 

6.3. Heuristic Results 

As was the case previously, all three heuristic approaches can solve the FSPS case study 

models very quickly (e.g., in less than two seconds). As expected, Table 11 confirms that IH2 

generates the best solutions in all test cases when comparing the three heuristic approaches. The 

amount of improvement achievable by using IH2 instead of the other two heuristic methods is 

much larger for the elementary school case that has the largest number of students. Table 12 

displays the ratio of each heuristic’s results to the Phase 2 optimization model for the FSPS case 

study problems. Again, improving performance is evident for IH2, especially in the cases where 

there is a larger number of available buses for student transport. 

 

Table 11: Heuristics Results in Total Miles for FSPS Case Study 
Level Buses Greedy IH1 IH2 

Junior High 
School 

1 50.6 50.6 47.0 
2 65.3 42.4 40.4 
3 60.7 45.9 44.0 
4 76.7 51.0 44.3 

Senior High 
School 

2 72.8 50.7 48.2 
3 83.7 53.8 50.4 
4 86.0 68.6 64.6 
5 100.3 55.0 51.8 

Elementary 
School 

3 95.2 94.5 70.6 
4 115.8 95.4 74.9 
5 134.6 90.5 74.7 
6 154.4 94.9 80.1 
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Table 12: Comparison of Heuristics to Phase 2 Optimization Model for FSPS Case Study 
Level Buses Greedy IH1 IH2 

Junior High 
School 

1 1.37 1.37 1.27 
2 1.96 1.27 1.21 
3 1.84 1.39 1.33 
4 2.26 1.50 1.30 

Senior High 
School 

2 1.44 1.00 0.95 
3 1.89 1.22 1.14 
4 1.88 1.50 1.41 
5 1.99 1.09 1.03 

Elementary 
School 

3 0.95 0.94 0.70 
4 0.91 0.75 0.59 
5 - - - 
6 - - - 

 

7 Conclusion and Future Research 

In this thesis, we investigate the special needs student busing problem using a phased 

approach to assess both optimization- and heuristic-based solution approaches’ ability to produce 

effective solutions to this challenging problem in a practically acceptable amount of time. The 

motivation for this research is to help school districts transport special needs students to their 

schools in a timely manner. Long bus ride times can be difficult on these often medically fragile 

students, so we seek to identify a systematic method for developing transportation routing plans 

for public school districts that can feasibly help to reduce this burden. 

Experimental results demonstrated our proposed methods’ abilities to develop 

transportation plans for both our experimental design dataset as well as for the data supplied by 

our research partner, the Fort Smith (Arkansas) Public School system. In the future, we hope to 

obtain the necessary permission/clearance to verify our case study results with current FSPS 

practice, as the school district’s concerns for student privacy currently are stopping us from 

doing so. Also, as our heuristics shows promising results for problem instances with a large 

number of students and a few number of schools, further modifications can be made to IH2 in the 

future to improve its performance over a wider range of school district scenarios. Finally, school 
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district flexibility in terms of their offering of special needs services at different district schools 

should be investigated, as our Phase 1 model sensitivity cases suggest that some minor 

reassignments of special needs teachers and/or classrooms may result in a non-trivial decrease in 

transportation costs. 

 Although we tested our models and algorithms on a specific school district via our Fort 

Smith Public Schools case study, our solution approaches are viable for any type of school 

district, provided the necessary model data described above is readily available. As was shown, 

while our optimization models do experience computational limitations as school district size 

grows, our heuristics perform reasonably well, very quickly for any size of school district. The 

fact that we believe the performance of our heuristics improve with increasing school district size 

also gives us hope as to their viability in practice. 
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