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1 Introduction and  Motivation  

Large-scale supply chain disruptions such as natural disasters, terrorist attacks, and 

transportation network failures can dramatically reduce supply chain effectiveness and result in 

significant economic loss. When items are delayed during transit due to a supply chain 

disruption, downstream factories may be without needed raw materials, increasing the likelihood 

that downstream warehouses and retailers may experience stockouts. When the items in transit 

are perishable, an additional level of concern is introduced, as items that spoil or degrade in 

quality can result in an even greater economic loss. 

Events of this century, such as the 9/11 terrorist attacks, hurricane Katrina, and the 2002 

West Coast port closures, have motivated the need for new supply chain models and decision 

support tools that consider the risks associated with such disruptions. The risk profile of a supply 

chain depends largely on the configuration of its transportation infrastructure components. 

Fortifying (securing) these components can increase the resiliency of a supply chain, where 

resiliency is defined as the ability of the system to return to an appropriate level of performance 

after disruption. Fortification investments specific to transportation infrastructure components 

can include increasing redundancy in the network via alternate paths or routes or facilities and 

improving the structural integrity of existing components (e.g., incorporating blast-resistant 

and/or earthquake-resistant materials). Unfortunately, such investments are expensive and 

fortification resources often are scarce. 

Developing models to prioritize the allocation of scarce fortification resources and 

maximize network resiliency requires knowledge of both the likelihood and the magnitude of 

each disruption that the investments are intended to protect against. They also require knowledge 

of the cost of alternate fortification strategies, as well as the network resiliency that would result 

from employing each alternate strategy. 

Determining the set of possible supply chain disruptions and their likelihoods of 

occurrence is difficult—this difficulty is further compounded by the fact that decision makers 

often have an imprecise understanding of the adversary trying to disrupt their supply chain, 

including his overarching goal or objective. For example, consider a terrorist as the adversary. 

His objective may either be 1) to damage network infrastructure component(s) that would cause 

the greatest economic loss, or 2) to damage the component(s) that are easiest or cheapest to 
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target. Accomplishing these two separate objectives may require an adversary to carry out very 

different sets of actions. Furthermore, we conjecture that an adversary’s target is likely to change 

in response to the decision maker’s fortification investments. Therefore decisions should be 

made that mitigate both present and future risk. 

Finally, there are a number of circumstances in which a network’s adversary has no 

known motivations, such as natural disasters. In these cases, while the occurrence of the 

disruption is random, it is subject to probability distributions that depend, for example, on 

geographies and weather patterns. The consideration of such random events complicates 

fortification efforts further due to the lack of a known adversarial objective to guide investment 

decision-making. 

This project focuses on the development of mathematical models that maximize network 

resiliency when allocating scarce fortification resources for transportation infrastructure 

components in perishable commodity supply chain networks. Our assessment of supply chain 

risk is from an all-hazards perspective, wherein potential disruptions include both unplanned 

(i.e., natural disasters) and planned, albeit dynamically changing, adversarial actions (i.e., an 

adversary with an adaptive, evolving objective). 

This project is differentiated from other research by its focus on inland waterway supply 

chains for perishable commodities. An additional distinguishing factor is that most previous 

research assumed disruptions were caused by an adversary whose objective was to maximize 

network disruption. Our modeling efforts attempt to account for all-hazard disruption scenarios 

to mitigate dynamic risk caused by an adversary with an unknown, adaptive objective.  

Our implementation efforts focus on bulk transportation of corn on inland waterways in 

the United States. Ninety percent of U.S. corn that is destined for export travels via barge to the 

Gulf of Mexico using the Mississippi River system (Frittelli, 2005). Corn is a perishable 

commodity that will quickly degrade in quality if it is subjected to moisture or high temperatures 

during transport (Sinha and Muir, 1973). If corn degrades in quality, it may need to be sold at a 

reduced price, or be discarded altogether if it spoils. Thus, the economic impact of disruptions to 

the bulk corn supply chain can include spoilage costs in addition to delay costs experienced by 

downstream factories, warehouses, and retailers who need corn and/or corn by-products as inputs 

to their own processes. Events such as river locks being destroyed or damaged can significantly 
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delay barge traffic. Thus, the fortification actions that we consider include 1) improving the 

structural integrity of existing locks, dams and major bridges and 2) constructing alternate 

intermodal routes between existing supply chain nodes.  

Our project is divided into three modeling phases. Phase I, focuses on models that 

allocate resources to waterway infrastructure components to increase resiliency when disruptions 

are caused by natural disasters.  Phase II considers disruptions caused by an adversary with a 

known objective, and Phase III explores the formulation of models that incorporates the effects 

of an unknown adversarial objective.  

2 Literature Review 

2.1 Inland Waterways  

The 25,000 miles of navigable inland waterways in the United States provide a cost-

effective way to move more than 630 million tons of cargo by barge each year (Inland Waterway 

Navigation, 2009). Figure 1 illustrates the North American inland and intracoastal network. The 

barges move bulk commodities and raw materials such as coal, petroleum, grain, stone, gravel, 

fertilizer and steel. Figure 2 provides a break-out of the share by commodity of the 627 million 

tons of cargo moved by barge in 2006 (Inland Waterway Navigation, 2009). More than 60 

percent of farm exports move on the inland waterways to downstream ports for export. The 

largest of these is grain with approximately 80 million tons moving by barge each year (Inland 

Waterway Navigation, 2009). The inland waterways provide the most economically and 

environmentally sound mode of transportation for moving goods and commodities. A single 

barge carries approximately 58 times more cargo than a tractor trailer and fifteen times more 

cargo than railcars, illustrated in Figure 3 (Inland Waterway Navigation, 2000). Figure 4 

provides a fuel efficiency comparison for the various modes of freight transportation.  

The Army Corps of Engineers maintains 12,000 miles of commercially-important 

navigable rivers. This segment includes 191 commercially active lock sites with 237 operable 

lock chambers. These locks and chambers provide essential infrastructure needed to move barges 

inland. They are especially vulnerable to attack, natural disaster or accidental events due to their 

age.  “Over 50% of the locks and dams operated by the Corps are over 50 years old and are 

approaching the end of their design lives” (Inland Waterway Navigation, 2009). 
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The aging infrastructure creates significant concern, especially as “domestic freight is 

expected to increase by 67%” and movement by barge is the most economical and 

environmentally friendly method to increase movement of goods in the United States (Inland 

Waterway Navigation, 2009).  

It should be evident that a disruption of services on inland waterways could have 

significant and undesirable consequences. A study by Global Insight modeled a 90-day closure 

of inland waterway routes on the Mississippi and Illinois rivers during the fourth quarter of 2005. 

This analysis modeled a variety of goods with the majority of it being grain (corn and soybean). 

Their analysis showed that the cost to move the goods on the inland waterway during this period 

was $118.6 million. In contrast, they estimated the cost of a modal shift from the waterways to 

rail as $428 million, and the cost of a modal shift from the waterways to highway as $1.5 billion 

for this same 90-day period (Sigman, 2008). Clearly, the inland waterways play a significant role 

in the economic security of this country. Disruption of this vital resource could have significant 

economic consequences in the supply chain. 

 

Figure 1. North American Inland and Intracoastal Waterways 
(www.worldcanals.com/image/usa.gif) 

http://www.worldcanals.com/image/usa.gif
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Figure 2. Inland Waterway Commodities Share by Tons  
(Inland Waterway Navigation, 2009) 

 

 

Figure 3. Comparison of Alternate modes of Transportation 
(Inland Waterway Navigation, 2000) 



 

 

7 Mitigating Dynamic Risk in Multi-Modal Perishable Commodity Supply Chain Networks  

4/30/2014 

 

 

Figure 4. Average Distance One Gallon of Fuel Moves One Ton of Freight  
(Inland Waterway Navigation, 2009) 

 

2.2 Supply Chain Risk and Resiliency  

Network resilience is a topic that has been extensively studied by the telecommunications 

industry. Monma and Shallcross (1989) consider the problem of designing networks with 2-

connected survivability constraints. Their objective is to minimize cost while maintaining a 

threshold survivability level (maintaining connectedness in the event that an arc fails). They 

present both network construction and network improvement heuristics for designing networks. 

Monma et al. (1990) examine the problem of constructing a minimum-weight, 2-connected 

spanning network. Their work is motivated by designing survivable communication and 

transportation networks. Grotschel et al. (1995) study the problem of designing networks with 

higher connectivity requirements so as to be able to survive network component failures. They 

provide integer program formulations, classes of valid and facet-defining inequalities, and 

polyhedral results. Eiselt et al. (1996) consider the problem of locating facilities so as to 

minimize the expected demand disconnected from other facilities in the event that one or 

multiple nodes fail. Such is the case when a network has unreliable nodes or links.  

Qiao et al. (2007) examine the problem of allocating security resources to a water supply 

network. They develop an integrated, iterative resource allocation model to maximize the 

network’s resilience using max-min linear programming, hydraulic simulation, and genetic 
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algorithms. They also present a number of measures of network resilience: connectivity, 

interconnectedness, and criticality (using interdiction). They find that low-order attack scenarios 

that have the greatest effect on network performance are the most important to guard against.  

Bundschuh et al. (2005) formulate models of what they call robust and reliable supply 

chains with long term contracting. They consider the tradeoffs in an integrated supply chain 

between supplier reliability, emergency buffers and contingency supply, and expected service 

level versus cost. Dong (2006) presents a three-stage approach to developing a system-wide 

robustness index. Dong’s index considers structural and functional aspects of network 

robustness. Dong identifies efficiency and robustness as critical measures of network 

performance. He also identifies two quantifiable measures (magnitude and likelihood) of 

network robustness. Haimes et al. (2008) consider the problems of protecting system assets and 

adding resilience to systems. They explore these problems in terms of emergence, resilience and 

preparedness and propose a framework to address them in large-scale systems. They also address 

issues of redundancy and robustness. Garg and Smith (2008) consider network survivability, a 

network’s ability to remain operational despite component failures. They formulate a mixed-

integer program to determine the minimal cost of a multi-commodity network subject to multiple 

simultaneous arc failures.  

Arc and node failures, whether intentional or accidental, decrease reliability and 

introduce uncertainty into a network. The introduction of uncertainty can cause various network 

entities (suppliers, warehouses, customers, etc.) to modify their behavior depending on their level 

of risk preference. Different entities have different appetites for risk based on their objectives 

and previous experiences and, as such, typically adapt their behavior in reaction to perceived 

threats. Berman et al. (2007) analyze the effects of facility failure on network design. They 

enhance the P-median problem to explicitly account for facility failure. They find that as the 

probability of facility failure increases, facilities become more centrally located and, sometimes 

multiple facilities are allocated to the same location, a phenomenon which they refer to as co-

location. Azaron et al. (2008) develop a multiobjective stochastic program considering risk. 

They consider supply, demand, processing, transportation, and capacity expansion costs as 

uncertain parameters. Their objectives are to minimize startup and continuing expenses while at 

the same time minimizing cost variance and the probability of not meeting a budget.  
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Recently, researchers have begun applying modern optimization tools (math models, 

algorithms, heuristics, etc.) to the network reliability problem. Liu and Iwamura (2000) examine 

the problem of k-terminal reliability in communications networks. They formulate a stochastic 

optimization model and use a simulation-based genetic algorithm for its solution. Yeh et al. 

(2002) continue the study of k-terminal reliability using 2-terminal reliability functions to 

evaluate k-terminal reliability. They generate 2-terminal reliability functions based on edge 

expansion diagrams using ordinary binary decision diagrams (OBDD). These 2-terminal 

reliability functions are then efficiently combined to construct k-terminal reliability functions. 

Srivaree-ratana et al. (2002) use a two-phase artificial neural network to estimate all-terminal 

network reliability. The first phase is trained on sample network topologies while the second 

phase uses results of the first phase, link reliabilities, and an upper bound on all-terminal network 

reliability for estimation.  

In addition to estimating network reliability of existing networks, much effort has also 

gone into designing networks with reliability in mind. For example, Xu and Goulter (1999) 

consider the problem of designing a water distribution network to maximize the network’s 

capacity reliability. This type of problem is generally referred to as the facility location problem 

(FLP). Snyder (2006) reviews articles on stochastic facility location models. He roughly divides 

the literature into two groups: stochastic location problems, in which the probability distribution 

of uncertain parameters is known, and robust location problems, in which the probability 

distribution of uncertain parameters is unknown. He observes that the objective of stochastic 

location models is usually to minimize an expected cost or to maximize an expected profit, while 

the objective of robust location problems is usually to minimize the maximum cost or regret.  

Network node failure in the context of facility location is considered by Drezner (1987), 

who generalizes the P-median problem to consider unreliable facilities. Drezner (1987) 

formulates the problem using set-covering, and then develops a heuristic that can be used to find 

good solutions to large problem instances. Lin (2001) continues the study of the reliability of 

networks with unreliable nodes or arcs. Given an aggregate system demand d, Lin (2001) 

develops an algorithm based on minimal paths to evaluate the probability that the maximum flow 

of a network is at least d.  
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Networks may also experience arc failure. Work in this area is carried out by Berman and 

LeBlanc (1984) through an examination of the P-median problem with a different arc focus. 

Instead of unreliable arcs, they work with arcs that are of random length. Their work is motivated 

by the real-world problem of how to relocate urban ambulances in the afternoon to preposition 

them in anticipation of rush hour traffic congestion. They develop an iterative local-search 

heuristic to locate facilities, which can be moved at a cost. Andreas and Smith (2008) consider 

the two-path problem, wherein there are two paths between a supply node and a demand node 

and at least one of them must stay open at least some threshold percentage of the time. They 

formulate a nonlinear integer program and examine different solution strategies (pruning, 

coefficient tightening, lifting, and branch-and-bound partitioning schemes).  

2.3 Supply Chain Disruption Models  

The concept of supply chain risk and security can mathematically represented using 

networks of various forms. The previous section discussed issues of network risk, reliability, 

robustness, and resilience. The remainder of the literature review focuses on models designed 

specifically to consider unique aspects of supply chain disruption.  

2.3.1 Network Interdiction Models  

Network interdiction is a specific class of network problems used for modeling supply 

chain disruption. The interdiction problem models an attacker-defender situation in which the 

attacker attempts to degrade performance of the defender’s network. Two popular network 

metrics for this problem are maximum network flow and the shortest path between two nodes. 

Cormican et al. (1998) formulate a stochastic version of the interdiction problem. Their objective 

is to minimize the maximum expected flow through a network subjected to interdictions. They 

enhance their model to also account for uncertain arc capacities. Held et al. (2005) study the 

objective of maximizing the probability of significantly disrupting network flow. They 

demonstrate the efficiency of an algorithm developed by Riis and Schultz (2003) in obtaining 

solutions to their interdiction problem variant, and present reformulations of the problem.  

Held and Woodruff (2005) also consider the objective of significantly disrupting flow, 

and explore the usefulness of local search-based heuristics in solving multi-stage network 

interdiction problems. Lim and Smith (2007) consider an attacker that disables a set of arcs to 

minimize the maximum profit that can be obtained from a multi-commodity network. They 
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consider both discrete (complete destruction of arcs) and continuous (partial reduction of arc 

capacities) interdictions. They compare a linearized model to a penalty model for the discrete 

case. For the continuous case, they use an optimal partition algorithm along with a heuristic 

which entails first solving the non-interdiction problem variant. Israeli and Wood (2002) 

examine an interdictor who seeks to maximize the shortest path between two nodes. They 

formulate a mixed-integer program to model the bi-level problem, and develop an efficient 

decomposition algorithm based on Benders decomposition to solve it.  

Brown et al. (2005) develop a generic bi-level interdiction model that considers 

reconstitutability and can be applied to most infrastructure systems. They demonstrate their 

model on power grids, subways, and airports. The main contribution of their model is that of 

reconstitutability, i.e., how attacked system components are repaired and their performance is 

restored over time. Their findings are mixed: some systems, like highways, are relatively robust, 

while others, like fuel-distribution systems, are not.  

2.3.2 Network Fortification Models  

Once an analysis of the risk associated with elements of a system is complete, a so-called 

fortification effort is pursued. That is, resources are allocated in a manner that makes the system 

less susceptible to attack. For example, Haimes et al. (1998) use a hierarchical holographic 

model to consider multiple perspectives concerning the fortification of a water system. They also 

define different types of fortification, including a mathematical definition of resilience.  

Ezell et al. (2000) present a probabilistic infrastructure risk analysis model (IRAM) to 

analyze a small town’s water supply. IRAM encompasses modeling, assessing, and managing 

system risk. The researchers focus on calculating critical and relevant measures to guide the 

allocation of scarce fortification resources. 

Church et al. (2004) propose spatial optimization models in the form of the r-interdiction 

median problem and the r-interdiction covering problem. Later, Church and Scaparra (2007) 

extend this model to include the option of fortifying sites. They formulate an integer-linear 

program to allocate fortification resources to minimize the impact of an attack. They also 

consider how the act of fortifying affects which elements are considered critical. In their work, 

impact is measured in terms of degraded service level, increased operating costs, costs of repair, 

and time to recover.  
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McGill et al. (2007) present a framework that supports asset-level fortification-resource 

allocation. Their framework initially focuses on generating threat scenarios based on a target 

susceptibility matrix. It also considers interdictors’ tendency to shift their aim from fortified 

infrastructure to less secure targets. Their framework differs from most other risk assessment 

methodologies in that it is asset-driven and not threat-driven. Smith et al. (2007) consider the 

fortification problem wherein the interdictor is also subject to an operating budget. They present 

optimal network design algorithms based on three different enemy attack strategies: attack arcs 

with the greatest capacities, with the greatest flows, or in such a way to optimally minimize the 

maximum flows. They model the scenario as a three-stage problem, consisting of constructing a 

network, inflicting damage to the network, and optimizing the remaining network.  

Scaparra and Church (2008) present the r-interdiction median problem with fortification 

(RIMF) that minimizes the impact to r unprotected facilities by effectively allocating protective 

resources. They formulate a bi-level optimization problem and propose a specialized tree search 

algorithm to solve it. The benefit of their formulation is that it does not require an explicit 

enumeration of possible solutions. Scaparra (2006) also provides the p-median fortification 

problem (PMFP) which differs from the RIMF in that facilities fail randomly with a given 

probability as opposed to intelligent interdiction by an adversary as in RIMF. Golany et al. 

(2009) formulate the fortification-resource allocation problem using linear impact functions. 

Their formulation independently considers both probabilistic and strategic risks. They find that it 

is best to allocate resources to sites with the highest impact under probabilistic risk, while 

spreading resources to decrease the impact of the worst-case scenario is more effective for 

strategic risk.  

2.3.3 Post-fortification Fallibility  

A key assumption associated with the Scaparra and Church (2008) RIMF model and the 

Scaparra (2006) PMFP model is that resources allocated to fortify a facility render that facility 

infallible. In practice, this assumption is not realistic, and we are interested in incorporating post-

fortification fallibility into our final model. A limited number of papers have also attempted to 

address this issue.  

Church and Scaparra (2007) present the stochastic r-interdiction median problem, in 

which r facilities are attacked, but each attack is associated with a probability of success. They 
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develop two models based on this framework which find the best and worst case expected 

efficiency degradation. For varying values of r, this then allows the user to generate reliability 

envelopes which bound the expected efficiency loss for a given number of attacks. Snyder et 

al.(2006) observe that replacing the deterministic r-interdiction median problem in the second 

stage of Scaparra and Church (2008) RIMF model with the stochastic version would create the 

stochastic analogue of the RIMF. However, it is not clear how this analogue could be presented 

without the assumption that fortified facilities may not fail. 

Zhan (2007) presents two models that make fortification decisions to decrease a facility’s 

probability of failure subject to a budget. The objective of both models is to minimize total 

expected demand-weighted distance travelled from customers to facilities. The continuous 

version allows facility reliability to be increased in a continuous fashion subject to a budget, 

while the discrete version allows for reliability of a facility to be associated with one of a finite 

number of states, with specific costs associated with improving the reliability of a facility to a 

given state level. Zhan (2007) uses a monotonic branch-reduce-bound procedure to find optimal 

solutions to small instances of both problems.  

Scaparra and Cappanera (2005) presented a scenario-based network fortification model 

with the objective of minimizing total expected cost of network flow. Scenarios correspond to 

attacks on user defined sets of facilities and fortification of a facility prevents failure regardless 

of whether the facility is attacked. Scaparra and Cappanera also provide a version of the model 

where attack corresponds to node capacity reduction and fortification of a facility merely reduces 

the impact of disruption from attack instead of completely preventing disruption. Peeta and 

Salman (2010) develop a bilevel stochastic program in which decisions are made to fortify arcs 

to increase the probability of arc survival. In the upper level program decisions are made subject 

to a budget with the objective of minimizing total expected cost of network flow, while the lower 

level program calculates the minimum cost flow for each failure scenario. They reformulate the 

problem as a single level optimization problem and provide an approximate solution procedure 

that gives a local optimum solution. While their model is capable of handling post-fortification 

fallibility, the computational results provided in their case study rely on the assumption that 

fortifying an arc reduces its probability of failure to zero.    
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2.3.4 Dynamic Network Models  

Actions and decisions that occur with respect to supply chains are clearly not static. That 

is, time elements related to transportation, consumption, delays and inventory are pivotal factors 

that impact the supply chain’s performance. Of course, this extends specifically to the analysis of 

supply chain risk, as we must consider the timing associated with any set of fortification, 

interdiction, and resource allocation decisions. In a general context, network models that 

consider time are often referred to as dynamic network models. Dynamic networks consist of 

duplicate nodes in a graph that represent a particular node over various time intervals of a fixed 

horizon (Jarvis and Ratliff, 1982). Time-dependent models have been considered in both 

continuous and discrete time contexts. Fleischer and Tardos (1998) extend discrete-time results 

to allow for continuous time models of some of the most standard dynamic models: maximum 

dynamic flows, quickest flows, lexicographically maximum flows and dynamic transshipments.  

Many important applications require the construction and analysis of dynamic networks. 

For example, Chalmet et al. (1982) model the evacuation of a building as dynamic flow through 

a network. Work on dynamic network models is also rich in the application area of 

transportation. Ben-Akiva et al. (1991) consider dynamic models needed to analyze network 

performance under various traffic congestion patterns. Their work allows for updated 

information to impact real-time routing decisions. Of particular interest in the context of supply 

chain risk are the dynamic multicommodity flow problems studied by Hall et al. (2003). They 

allow flow values on arcs to vary with time and consider the specific complexity of dynamic 

multicommodity flow problems. Their results offer an example of the computational challenges 

surrounding many time-expanded problems. They show that the dynamic multicommodity flow 

problem belongs to the class of NP-Hard problems and offer efficient algorithms that benefit 

from assumptions and insights surrounding specific network topologies.  

Interestingly, dynamic considerations have been given much less attention in the 

interdiction and fortification problems discussed previously. Among the few works that have 

pursued dynamic network interdiction, Derbes (1997) proposes a Lagrangian-based heuristic for 

interdicting a time-expanded transshipment network. His work finds near-optimal solutions for 

problems with up to 40,400 nodes and 153,419 arcs in less than one half hour. In addition, 

Malaviya et al. (2010) consider the best allocation of law enforcement resources over a fixed 
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horizon in order to interdict drug traffic. Their results identify arrest patterns that suggest stings 

on users served by common dealers as the most effective strategy for minimizing the maximum 

drug flow.  

A lack of dynamic interdiction and fortification work has been formally recognized by 

leaders in the field. Smith (2009) identifies multi-period scenarios in which interdiction and 

fortification alternate over a finite horizon as one of the most pressing challenges that researchers 

face. He cites that existing methodologies used to solve small dynamic problems (two or three 

time periods) are unlikely to be extendable to real-life instances with extended horizons 

comprised of numerous periods. Most importantly, he points out that the lack of ability to solve 

dynamic interdiction/fortification problems means that a potential adversary may expose the 

weakness of a suboptimal time-dependent fortification priority list by delaying interdiction 

actions until the system is most vulnerable. 

2.4 Perishability 

 The agriculture and health industries would benefit greatly from accurate modeling of 

perishable commodity supply chains.  Significant economic loss can be seen each year in the 

form of food, blood, and medication spoilage.  Apart from incorporating perishability through 

scenario construction (Pierskalla, 2004), perishability is primarily modeled in two ways: cost 

quantification of lost goods or focusing on other model resources in order to remove the potential 

for large-scale spoilage.  

 The most common approach for perishability considerations is accounting for spoilage in the 

form of system costs.  Nagurney et al. (2011) model the blood supply chain with nodes for each 

process in the collection and distribution of blood.  They assess a penalty cost for spoilage for 

every excess unit of flow that reaches the final demand node.  Additionally, they decrease arc 

flow between nodes to account for blood destroyed during each processing phase.   

 Other researchers use perishability to motivate objectives that focus on other resources.  

Cetin (2009) presents a mathematical programming model for locating blood banks around 

hospitals and clinics.  This approach minimizes total system distance.  By minimizing the 

distance between blood supply and demand points, the time between blood collection and 

distribution should be minimized, thus decreasing the total system spoilage 
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2.5 Bi-level Network Design 

Given a network of arcs and nodes, network interdiction problems study two opposing 

forces with competing objectives. There are two primary types of network interdiction problems. 

In maximum flow network interdiction, the interdictor's goal is to minimize the maximum flow 

that can pass through the network after the interdicted arcs have been removed. In shortest path 

network interdiction, the interdictor's goal is to maximize the length of the shortest path through 

the network after the removal of interdicted arcs. The competitive nature of these problems is an 

ideal application of bi-level programming. In a bi-level program, a leader chooses actions and 

then a follower reacts optimally based on those actions. In network interdiction, the leader is the 

interdictor, and the follower is the network traverser, either sending the maximum flow or 

traveling the shortest path through the network.  Many exact solution approaches for standard bi-

level programs are somewhat limited, particularly in terms of required computational time, and 

this has led to the development of heuristic approaches to bi-level network interdiction problems, 

especially for time-sensitive applications. 

Military applications are a primary driver of these heuristic approaches. Practically, a 

useable methodology for solving network interdiction problems in a military setting needs to 

quickly produce quality answers. Cormican (1995) took advantage of the easy-to-solve 

subproblems of maximum flow network interdiction through the application of Bender's 

decomposition and extended it with an original “flow-dispersion” heuristic. This methodology 

gets good solutions, but the computational time required, even after the heuristic improvement, is 

prohibitive for quick turnaround military applications. Bingol (2001) used a lagrangian 

relaxation technique that relaxed the interdiction resource constraint to solve maximum flow 

network interdiction. This method solves quickly and the results for many problems are exact 

solutions, however the “problematic" instances of this problem, where maximum network flow is 

small, prove very difficult and the heuristic often yields large optimality gaps. Derbes (1997) 

applies a lagrangian relaxation technique to dynamic networks. Once again, this heuristic solves 

quickly but does not guarantee good solutions. In fact, the heuristic generates many possible 

solutions without guaranteeing feasibility and selects the best of the feasible solutions. When 

tested on dynamic networks, near-optimal solutions were found in only just over half of the test 

instances. Uygun (2002) extended Bingol's (2001) work trying to resolve the problematic test 
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instances. First, a better search method was used to find the lagrangian multiplier. Second, a 

branch-and-bound algorithm was incorporated on those problematic instances. Even with these 

additional measures, one in five of the problematic instances remain unsolvable, and the 

instances solved using the branch-and-bound method experienced severe run time increases. 

Royset and Wood (2007) extended this work with a specialized branch-and-bound method to 

determine the efficient frontier created by weighing two interdictor objectives, minimizing both 

maximum network flow and total interdiction cost. This methodology generally solved 

significantly faster than an exact integer programming approach. 

Heuristic approaches are also appropriate than exact methods for problems with 

additional complicating elements. Gutfraind et al. (2010) consider a Markovian evader guided 

through the network by the least-cost path to the sink. In this case, they are able to reformulate 

the bi-level network interdiction model as a single level nonlinear 0-1 optimization problem. 

They then develop a heuristic based on betweenness centrality that quickly finds high-quality 

interdiction solutions. This simplification of the follower does not, however, generalize to all 

problem applications. 

The literature for bi-level network interdiction heuristics is somewhat limited due to the 

high number of exact approaches available for these problems. Military applications rely heavily 

on heuristics due to the speed at which good solutions to these problems are required, but for 

most other applications the decrease in computational time requirements are not worth the 

associated increase in the optimality gap. This literature review can, however, be extended by 

opening the subject up to heuristics designed for other bi-level problem types. 

Aksen et al. (2011) examined a p-median problem bilevel program formulated to plan 

and protect critical facilities. In their problem, the leader is the system planner and must decide 

where to open p critical service facilities and which of those facilities to protect with additional 

resources, making that facility immune to interdiction. The follower then makes interdiction 

decisions. They began by solving the problem exactly, which often must be done using an 

exponential time algorithm. In order to address this impractical computational requirement, they 

utilized a two-phase tabu search heuristic. The first phase uses tabu search to find the best p 

facility locations, and the second phase solves the remaining bi-level program exactly. This 

heuristic methodology resulted in significant time savings and worked well on a variety of 

problem sizes. 
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Lan et al. (2007) utilized a hybrid neural network and tabu search heuristic to solve bi-

level programs. Tabu search is first used to select the binary variables, which are then fed into a 

neural network, which indicates if binary combinations are infeasible before another set is 

generated. This iteratively continues until tabu search termination. This method experienced 

some improvement over previous branch-and-bound approaches and is generalized for any bi-

level program. 

Rajesh et al. (2003) utilized a pure tabu search method to solve bi-level programs. They 

benchmarked their results on many well-known problems and achieved near optimal solutions in 

far less time those previous methods in the literature. The heuristic is simple enough to be easily 

modified to apply to more complex bi-level formulations. Uno and Katagiri (2008) also use tabu 

search to solve a bi-level program that solves the defensive location problem, where the leader 

locates defensive facilities to keep the follower from reaching an important site. This 

methodology was shown to be more efficient than a random search algorithm and a genetic 

algorithm for seven test instances. These results indicate that tabu search is a good heuristic for 

solution generation to bi-level programs. 

Tabu search is not, however, the only heuristic methodology that can be successfully 

applied to bi-level programs. Calvete et al. (2008) developed a genetic algorithm to solve linear 

bi-level problems. The method is contingent on the existence of an extreme point of the feasible 

region polyhedron of the problem as it applies a genetic algorithm to extreme point enumeration 

to find good solutions. This work is able to handle a higher level of complexity more efficiently 

than previously examined tabu search methods as long as the problem remains linear. They go on 

to show that the heuristic also works for quasiconcave bi-level problems provided the feasible 

region of shared constraints is a polyhedron, as the method still requires the location of an 

extreme point. 

Kuo and Huang (2009) developed a particle swarm heuristic to solve linear bi-level 

programs. They compared their computational results with a genetic algorithm approach for four 

test problems with the particle swarm method outperforming the genetic algorithm in three of the 

four problems in terms of accuracy. The particle swarm method required slightly less 

computational time, but more importantly, the standard deviation of its computational time was 

lower than that of the genetic algorithm. This implies that the particle swarm method has higher 

stability than the genetic algorithm and produces more predictable run times. Kuo and Han 
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(2011) extended this work to utilize a hybrid genetic algorithm and particle swarm heuristic. 

They proposed three different hybrid methods, all of which outperformed the particle swarm or 

genetic algorithm heuristics alone. They are all, however, limited to linear bi-level programs. 

Calvete et al. (2011) used a bi-level program to model a hierarchical production-

distribution planning problem in which different decision makers control the production and 

distribution processes. They utilize an ant colony heuristic to solve the bi-level model, where a 

feasible solution to the associated multi-depot vehicle routing problem is constructed by the ants. 

The global pheromone trail is updated based on the distribution objective, and the production 

problem is resolved iteratively. The results of this work were repeated on a variety of problems, 

indicating method stability, but they were not compared to other methods. 

While heuristics are not widely applied directly to bi-level network interdiction problems, 

they are extensively used on several other types of bi-level problems. The literature indicates that 

it is most important to develop a heuristic that best suits a specific problem, as there is no method 

that universally outperforms all others. 

 

2.6 Coevolutionary Algorithms  

Coevolutionary algorithms are a type of evolutionary algorithm in which individuals in 

one population are evaluated based on their interactions with individuals in another population. 

There are two main types of coevolutionary algorithms: competitive and cooperative. In 

competitive coevolutionary algorithms, individuals in one population are rewarded at the 

expensive of those they interact with in the other, whereas individuals in cooperative 

coevolutionary algorithm are rewarded when they work well with the other population's 

individuals. This dual population structure is well suited to bi-level programs, so several bi-level 

implementations in the literature have utilized coevolutionary algorithms. 

Deb and Sinha (2009) applied a coevolutionary algorithm to a bi-level multi-objective 

program, meaning both the leader and follower problems have more than one objective. This 

means that the coevolutionary part of the heuristic is primarily focused on a cooperative heuristic 

inside each subproblem. Their bi-level problem is structured so that any feasible solution to the 

upper level problem corresponds to the Pareto-optimal solution to the corresponding lower level 

problem. Their proposed heuristic was very successful in solving their problem. 
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Koh (2009) applied a coevolutionary particle swarm algorithm to bi-level variation 

inequalities for a highway transportation network. This heuristic maintains two particle swarms, 

each of a different species, with all members competing for the same placement in the network. 

This algorithm "easily obtained" the solution provided in the literature to all test problems. 

Legillon et al. (2012) propose a cooperative coevolutionary algorithm for bi-level 

optimization. The basis of this algorithm is an incremental improvement to two different sub-

populations, one for each level of the bi-level program, that periodically exchange information 

with one another. Unfortunately, there is little specific information on the exact operations 

performed on these populations.  

3 Mathematical Modeling Approaches 

In this section, we develop a set of mathematical models designed to assist in allocating 

resources for mitigating risks associated with infrastructure supporting the inland water ways.  

The goal is to explore model structures that will allows us to investigate the imperfect 

fortification, perishability issues associated with agriculture products, and the changing goals of 

an adversary over time.   

3.1 Multi-period p-median fortification model with post-fortification fallibility 

In this section a multi-period mathematical model is formulated that determines how and 

when to allocate resources to secure multi-modal infrastructure assets on the Upper Mississippi 

River.  We begin our model development with the standard p-median fortification model since it 

considers random facility failures—an ideal way to consider the occurrence of natural disasters 

(Church, 2007; Snyder, 2006). In this model, facility fortification decisions are made with the 

objective of minimizing total expected distance traveled from each customer to their closest 

operational facility. The p-median fortification models found in the literature typically assume 

facilities can no longer fail once they have been fortified. We formulate a model extension for 

the more realistic scenario in which fortified facilities may still be vulnerable, i.e. are still at risk 

but at some reduced level. In our extension, the post-fortification failure probability of facility is 

nonzero, and is less than its pre-fortification probability of failure. The model extension also 

includes a multi-period planning horizon that allows for dynamic decision-making subject to a 

budget constraint, where fortification decisions are made for each facility in each time period. It 
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is assumed in this model that facilities that fail in one time period are operational again in the 

following time period, that is, the probability of failure for each facility is independent among 

time periods.  

The basic model considers a set of facilities (or infrastructure components in our context) 

and a set of customers. Facilities are fallible, and their individual probabilities of failure can be 

reduced through the allocation of fortification actions subject to a budget in each time period. 

Optimal risk reduction decisions are determined by minimizing the total expected demand 

weighted distance from customers to facilities over the entire planning horizon. 

We define J to be the set of existing facilities, I to be the set of customers served by those 

facilities, and T to be the set of time periods in the planning horizon. hit is the demand of each 

customer i ϵ I in time period t, and di
k is the distance from customer i to its kth closest facility 

(note that this remains the same in each time period). The failure probability at the beginning of 

the first time period is given by pj, for each facility j ϵ J. We let mt denote the factor of 

fortification in time period t, such that the probability of facility failure is reduced by a factor of 

mt if that facility is fortified in period t. bt denotes the budget available in period t, while cjt 

represents the cost of fortifying facility j in period t. Finally, we let, wij
k be 1 if facility j is the kth 

closest facility to customer i and 0 otherwise. 

We define the binary variables zjt, for each facility j ϵ J and time period t ϵ T, to be 1 if 

facility j is fortified at time t and 0 otherwise.  The continuous decision variables qit
k, for all k ϵ J, 

i ϵ I, and t ϵ T denote the post fortification failure probability of the kth closest facility to 

customer i at the end of time period t. The continuous variables rt represent the amount of unused 

budget from previous periods available for use in period t.  The inclusion of this variable enables 

the model to save and accumulate budget over multiple periods in order to afford more expensive 

fortification actions in later periods.  The complete math model is given below: 

min���ℎ𝑖𝑡𝑑𝑖𝑘(1 − 𝑞𝑖𝑡𝑘 )�𝑞𝑖𝑡𝑙
𝑘−1

𝑙=0𝑘∈𝐽𝑖∈𝐼𝑡∈𝑇

                                                                                                    (1) 

𝑠. 𝑡.�𝑐𝑗𝑡𝑧𝑗𝑡 ≤ 𝑏𝑡 + 𝑟𝑡 ∀𝑡 ∈ 𝑇
𝑗∈𝐽

                                                                                                   (2) 
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𝑟𝑡 = 𝑏𝑡−1 + 𝑟𝑡−1 −�𝑐𝑗(𝑡−1)𝑧𝑗(𝑡−1) ∀𝑡 = 2, … , |𝑇|                                                               (3)
𝑗∈𝐽

 

𝑟1 = 0                                                                                                                                                (4) 

𝑞𝑖1𝑘 = �𝑤𝑖𝑗
𝑘 �𝑝𝑗�1 −𝑚𝑧𝑗1��  ∀𝑖 ∈ 𝐼,𝑘 ∈ 𝐽                                                                             (5)

𝑗∈𝐽

 

𝑞𝑖𝑡𝑘 = �𝑤𝑖𝑗
𝑘 (𝑞𝑖(𝑡−1)�1 −𝑚𝑧𝑗𝑡�)

𝑗∈𝐽

 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐽, 𝑡 = 2, … , |𝑇|                                              (6) 

𝑧𝑗𝑡 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇                                                                                                                (7) 

 

Our objective, (1), is to minimize total expected demand weighted distance traveled from 

customers to their closest operational facility over all time periods. Constraints (2) enforce a 

budget for each time period, while constraints (3) keep track of the budget remaining in each 

time period so that it may be rolled over for use in the next period. A time value of money factor 

can easily be added to constraints (3), should it be relevant to the application. Constraint (4) 

initializes the budget remainder in the first period to zero. Constraints (5) link the post 

fortification failure probabilities to the choice of facilities to be fortified for the first time period, 

where the previous probabilities of failure are given by the parameters pj. Constraints (6) link the 

z binary fortification variables to the q variables representing the updated probabilities of failure 

for subsequent time periods. 

Interestingly, this model can be reduced by substituting (3) – (6) into (1) and (2).  This 

reduced representation leaves a knapsack constraint with a flexible right-hand resource 

constraint.  Therefore, this problem falls into the difficult class of nonlinear knapsack problems 

that cannot be readily solved to optimality.  However, there is opportunity to approximate the 

nonlinear objective with further evaluation of the function structure.  

 

3.2 Multi-period minimum cost network flow model with fortification 

In this section a minimum costs network flow model with fortification is proposed. Let 𝐿 

be the set of locks and dams and 𝐵 be the set of bridges that cross the Upper Mississippi. Each 
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lock/dam combination 𝑙 ∈ 𝐿 has an associated supply, 𝑑𝑙, of corn that enters the river at site 𝑙, 

which represent the locks/dams corresponding to the pool data. Let 𝑊 =  𝐿 ∪ 𝐵. Then there is a 

set of directed arcs connecting these nodes in each of 𝑊, and which represent stretches of the 

river navigable by barge. Each arc has a corresponding travel cost per unit of corn by barge, 𝑐𝑤𝑟  

where 𝑤, 𝑟 ∈  𝑊. We define 𝐷 as the set of all supply nodes from which corn enters the river. 

Arcs with zero cost connect the nodes of 𝐷 with the appropriate nodes in each of 𝑊. Let 𝑅 

denote the set of major intersections in the railroad network surrounding the Upper Mississippi, 

and let a set of directed arcs connecting these node represent railways, each with a corresponding 

cost of rail shipment per unit of corn, 𝑐𝑖𝑗  where 𝑖, 𝑗 ∈  𝑅 . 𝐻  is defined as the set of major 

intersections in the corresponding highway network, with associated highway links, and costs of 

moving one unit of corn by truck given by 𝑐ℎ𝑙 where ℎ, 𝑙 ∈  𝐻. 

Define 𝑠0 as the sink of the network, located southern most of all the nodes. Let 𝑁, the set 

of nodes in the overall network be given by 𝑁 =  𝑊 ∪ 𝑅 ∪ 𝐻 ∪ 𝑠0. Then let 𝐴, the set of arcs in 

the overall network, be the set of all arcs associated with each of the afore mentioned node 

sets as well as appropriate directed arcs that link 𝑊 to the set of rail nodes, 𝑅, the set of highway 

nodes, 𝐻. Costs on those arcs reflect the cost of transferring from one mode of transportation to 

another. If desired, fixed costs may be associated with these “multimodal arcs” that reflect the 

cost of establishing a transfer point. These fixed costs may then be incorporated into the 

objective. Each node in node set 𝑁 has an associated capacity, 𝑘𝑗 for each 𝑗 ∈ 𝑁 that represents 

the amount of flow that can pass through node 𝑗. 

For the purposes of our planning model we introduce 𝑇, the set of time periods. Net 

supply at each node 𝑗 ∈ 𝑁 is given by 𝑏𝑗𝑡 in each time period 𝑡 ∈ 𝑇. A positive 𝑏𝑗𝑡 corresponds 

to a supply node, a negative 𝑏𝑗𝑡 corresponds to a demand node, and a 𝑏𝑗𝑡 value of zero denotes a 

transshipment node. Over the course of the planning period, facilities may fail due to natural 

disaster or intentional attack. For the purposes of our model we will differentiate between 

“attacks” and “failures”. An attack occurs when conditions arise that threaten a facility. An 

unfortified facility will fail as a result of an attack with probability 1, while a fortified facility 

will withstand the attack. A particular combination of facility attacks over the planning horizon 

is referred to as a scenario and S denotes the set of possible scenarios that may occur over the 

planning horizon. For each scenario, 𝑎𝑗𝑠𝑡 is an input parameter that is one if facility 𝑗 is attacked 
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in scenario 𝑠 during time period 𝑡 and zero otherwise. For each possible scenario, 𝑞𝑠 denotes the 

probability that scenario 𝑠 ∈ 𝑆 occurs. The model given below makes fortification decisions to 

protect facilities against failures. A certain number of fortifications per time period, 𝑄𝑡  is 

allowed. To ensure feasibility in the event of facility failures, we define 𝑢 as a dummy source 

connected by an arc to demand node 𝑠0 and 𝑣 as a dummy sink connected by arcs to all supply 

nodes. 

Our decision variables, 𝑍𝑗𝑡, are one if facility 𝑗 ∈  𝑁 is fortified in time period 𝑡 and zero 

otherwise. The network flow variables, 𝑌𝑖𝑗𝑠𝑡, represent the flow on arc (𝑖, 𝑗) in time period 𝑡 if 

scenario 𝑠 occurs. The model is then given by: 

min��𝑞𝑠 � 𝑐𝑖𝑗𝑌𝑖𝑗𝑠𝑡
(𝑖,𝑗)∈𝐴𝑠∈𝑆𝑡∈𝑇

                                                                                                                       (1) 

𝑠. 𝑡. � 𝑌𝑗𝑖𝑠𝑡 − � 𝑌𝑖𝑗𝑠𝑡 = 𝑏𝑗𝑡  ∀𝑗 ∈ 𝑁\
(𝑖,𝑗)∈𝐴(𝑗,𝑖)∈𝐴

{𝑢, 𝑣}, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆                                            (2) 

� 𝑌𝑗𝑖𝑠𝑡 ≤ �1 − 𝑎𝑗𝑠𝑡�𝑘𝑗 + 𝑎𝑗𝑠𝑡𝑘𝑗�𝑍𝑗𝑙  ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆                                        (3)
𝑡

𝑙=1𝑖∈𝑊,𝑖≠𝑗

 

�𝑍𝑗𝑡 = 𝑄𝑡 ∀𝑡 ∈ 𝑇                                                                                                                       (4)
𝑗∈𝑊

 

�𝑍𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝑊                                                                                                                        (5)
𝑡∈𝑇

 

𝑍𝑗𝑡 ∈ {0.1} ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇                                                                                                             (6) 

𝑌𝑖𝑗𝑠𝑡 ≥ 0  ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆                                                                                               (7) 

The objective of this multiperiod network flow model is to minimize the expected cost of 

all flows over all time periods, given the probabilities that various scenarios occur. The possible 

scenarios in 𝑆 have the property that probabilities of each scenario occurring all sum to one. 

Each scenario corresponds to a set of “attacks” that are made on certain facilities during certain 

time periods. Constraint set (2) are the flow balance constraints that ensure flow balance is 

achieved at every node except the dummy sink and source in each time period. Constraint set (3) 

links the 𝑌 and 𝑍 variables, ensuring that flow cannot pass through a node that is attacked in a 
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given scenario and time period unless it has been fortified in that or a previous period. The 

structure of constraint set (3) also implies that if a facility/node fails in one time period that is 

operational again by the next time period. Note also that 𝑢 and 𝑣 may not be fortified, and are 

not included in the capacity or fortification constraints. The dummy source and sink are 

necessary to ensure feasibility as certain scenarios may otherwise render the problem infeasible. 

Constraint set (4) restricts the number of fortification actions that may take place in each time 

period. Constraint set (5) ensures that a facility is fortified no more than once in the planning 

horizon. Under current assumptions, a fortified facility cannot fail, therefore it seems reasonable 

over the entire planning horizon the total number of fortification actions will be less than or 

equal to the number of nodes. This multi-period network flow with fortification model will be 

the base for further extensions in the areas of perishability, post-fortification fallibility, and 

adaptive adversarial objectives.  Even without further complexities, this model is challenging in 

terms of the number of scenarios that should be considered.  To apply this model, the number of 

scenarios to possibly consider is exponential and most decisions associated with scenarios will 

be 0 in an optimal solution.  Therefore, there is potential for a column generation-based 

procedure to improve the tractability of this formulation.  

3.3 Tactical Risk Mitigation in a Perishable Commodity Supply Chain 

It is assumed that there is a user-defined set of attack scenarios , 𝑆 , with 𝑠 ∈ 𝑆 

corresponding to one attack “plan" in which the input parameter 𝑎𝑗𝑡𝑠 is 1 if facility 𝑗 is attacked 

in time period t under attack plan s. The probability that attack scenario 𝑠 ∈ 𝑆 is carried out is 

given by the input parameter 𝑞𝑠 . An attacked facility may fail or survive the attack. The 

probability of facility failure given an attack in time period t is given by the decision variables 𝑟𝑗𝑡 

for facility j. The initial probabilities of facility failure given an attack in time period 1 are given 

as input parameters. For each attack plan 𝑠 ∈ 𝑆, then, there are a number of possible “realized 

scenarios", 𝑙 ∈ 𝐿𝑠 that correspond to each possible combination of realized failures and survivals 

of facilities under attack plan s. The input parameter 𝑘𝑗𝑡𝑙𝑠 is 1 if facility j fails in time period t in 

realized scenario l of attack plan s. Each realized scenario 𝑙 ∈ 𝐿𝑠  under attack plan 𝑠 ∈ 𝑆 will 

occur with probability 𝑝𝑙𝑠, which is a decision variable that depends on fortification decisions to 

facilities in previous and current time period. It makes sense that for a facility to actually fail that 
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it must both be attacked and succumb to that attack. In this model, it is assumed that fortification 

actions would affect the second component, whether a facility succumbs to an attack. 

The network is given by a set of nodes, N, along with the arcset connecting those nodes, 

A. Each node in the overall network has a net supply in each time period, given by the input 

parameter 𝑏𝑗𝑡 for 𝑗 ∈ 𝑁. The network contains one univeral sink, u, and one universal source, v, 

that are connected to all non-transshipment nodes as appropriate to ensure feasibility in the event 

of facility failures. Prohibitively high costs and age values are placed on these arcs. Contained in 

N is the set of waterway infrastructure nodes, W, representing lock and dam combinations, 

bridges, and ports. All source nodes are elements of W, and net supply at each node is the 

positive difference in flow from the previous node to the current (current pool minus previous 

pool). Select elements of W are connected to intermodal transfer points, denoted by the set of I 

(note that u and v are also elements of I). These nodes are then connected to a rail/highway 

network. Each intermodal transfer point, 𝑖 ∈ 𝐼 has an associated input parameter 𝑣𝑖  that 

represents the age of the commodity as it reaches component i. This is the age of the commodity 

at point i provided that it travelled exclusively on the waterway up until transfer point i. A 

function, f(age) represents the value of one unit of commodity at a given age. For each 

intermodal transfer point, i, there is a set of unique paths that connect the intermodal point to the 

demand sink, given by 𝑃1𝑖 ,𝑃2𝑖 , … ,𝑃𝑖𝐾𝑖 (𝐾𝑖denotes the number of paths orginating at i and ending 

at the demand sink). Associated with each path 𝑃𝑘𝑖 originating at point i is 𝑑𝑘𝑖𝑡 , the amount of 

time required to travel path 𝑃𝑘𝑖. In each time period t of each realized scenario of each attack 

plan, the amount of commodity flow on path 𝑃𝑘𝑖 is given by the decision variable 𝜇𝑠𝑙𝑡𝑖𝑘. 

The set of nodes that may be fortified (in other words, the set of nodes that may fail) is 

the set of waterway infrastructure nodes, W. The input parameter ℎ𝑗  denotes the length of 

disruption of facility j if it fails. The cost of fortifying facility 𝑗 ∈ 𝑊 is given by 𝑒𝑗𝑡, and the 

decision variable 𝑧𝑗𝑡  is 1 if facility 𝑗 ∈ 𝑊  is fortified in time period t. A fortified facility's 

probability of failing under attack is reduced by input parameter 𝜃 for each fortification action. 

Resources may also be allocated to improve the resilience of existing transfer points. Let the 

decision variable 𝑧𝑖𝑡 be 1 if investment is made in transfer point i, and let 𝑒𝑖𝑡 represent the cost of 

such an action. If that investment is made, the cost and time required (i.e., amount added to age 

of product) to transfer modes will both be reduced. For each investment, the cost and time 

required to transfer are reduced by input parameters M and U, respectively. 
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The decision variables 𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arcset A in 

time period t. The capacity of each node 𝑗 ∈ 𝑁 is given by 𝑚𝑗. Costs are given by 𝑐𝑖𝑗𝑡, the cost of 

traversing arc (i, j) in time period t. The cost of switching from waterway to another mode of 

transportation is reflected in the cost of arcs connecting nodes in W to nodes in I. These costs 

may be reduced by investments in the transfer components, and so the 𝑐𝑖𝑗𝑡s are decision variables 

(although costs for non-mode transfer arcs may be treated as input parameters). Transfer links 

may only be used if they have been “opened”. Resources may also be allocated to open new 

intermodal transfer links, with fixed, one-time costs of 𝑜𝑖𝑡 to open link point i in time period t. 

The binary decision variables 𝑓𝑖𝑡 represent whether a link is opened in time period t. The link 

may be used in any subsequent periods after it has been opened, and variables corresponding to 

initial links present in the first time period are set to 1. The starting network then has a set of 

initial link points as well as potential link points that are being considered. Arcs connect the 

waterway nodes in W to initial and potential link points as appropriate (each link point adjacent 

to only one waterway node; waterway nodes may be adjacent to multiple link points). Costs and 

“age values” on those arcs reflect starting values in the first time period, with costs on the 

potential link points set to “starting” cost and age values were the link to be opened. 

Decisions to improve the reliability of waterway nodes, the resilience of transfer nodes, 

and to open new transfer nodes are subject to a budget in each time period, given by input 

parameter 𝜁𝑡. Decisions are then made according to one of three objectives. 

 

3.3.1 Notation 

Input Parameters 
S is the set of attack plans 

T is the set of time periods 

N is the set of nodes in the network 

W is the set of waterway nodes 

I is the set of intermodal transfer link nodes (each member of I is connected to exactly one 

member of W, but each member of W may be connected to multiple members of I) 

𝐿𝑠 is the set of realized scenarios that may occur given attack plan 𝑠 ∈ 𝑆 is carried out 

𝑎𝑗𝑡𝑠 is 1 if facility j is attacked in time period t under attack plan s 
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𝑞𝑠 is the probability that attack scenario 𝑠 ∈ 𝑆 is carried out 

𝑘𝑗𝑡𝑙𝑠 is 1 if facility j fails in time period t in realized scenario l of attack plan s 

𝑏𝑗𝑡 is net supply in each time period for 𝑗 ∈ 𝑁 

u is the universal sink 

v is the universal source 

f(age) represents the value of one unit of commodity at a given age 

𝑣𝑖 that represents the age of the commodity as it reaches component 𝑖 ∈ 𝐼 

𝑃𝑘𝑖 is the kth path originating at point i that ends at the sink at the “bottom” of the network 

𝐾𝑖 denotes the number of paths originating at i and ending at the demand sink 

ℎ𝑗  denotes the length of disruption of facility j if it fails 

𝑒𝑗𝑡 is the cost of fortifying facility 𝑗 ∈ 𝑊 in time period t 

𝑒𝑖𝑡 is the cost of investment in transfer point 𝑖 ∈ 𝐼 in time period t 

M is the amount by which cost of transfer is reduced if investment in transfer point 𝑖 ∈ 𝐼 occurs 

U is the amount by which the time required to transfer modes is reduced if investment in transfer 

point 𝑖 ∈ 𝐼 occurs 

𝑚𝑗 is the capacity of each node 𝑗 ∈ 𝑁 

𝑜𝑖𝑡 is the fixed, one-time cost of opening new intermodal transfer link 𝑖 ∈ 𝐼 

𝜁𝑡 is the budget for all investment decisions in time period t 

𝜃  is the amount by which a facility's probability of failure decreases given a fortification 

investment 

𝑟𝑗𝑡 is the probability of facility failure given an attack in time period t for facility j 

𝑝𝑙𝑠 is the probability that each realized scenario 𝑙 ∈ 𝐿𝑠 under attack plan 𝑠 ∈ 𝑆 (depends on 

fortification decisions to facilities in previous and current time period) 

𝑑𝑘𝑖𝑡 is the amount of time required to travel path 𝑃𝑘𝑖 in time period t 

 

Decision Variables 
𝜇𝑠𝑙𝑡𝑖𝑘 is the amount of commodity flow on path 𝑃𝑘𝑖 in each time period t of each realized 

scenario 𝑙 ∈ 𝐿𝑠 of each attack plan 𝑠 ∈ 𝑆 

𝑧𝑗𝑡 is 1 if facility  𝑗 ∈ 𝑊 is fortified in time period t 
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𝑦𝑖𝑗𝑡𝑙𝑠 represents the magnitude of flow on arc (i, j) in arc set A in time period t under realized 

scenario l of attack plan s 

𝑐𝑖𝑗𝑡 is the cost of traversing arc (i, j) in time period t (this made change based on investment 

decisions in intermodal transfer links) 

𝑓𝑖𝑡 are binary decision variables representing whether a link to transfer point 𝑖 ∈ 𝐼 is opened in 

time period t 

 

 

 

3.3.2 Model 

Objective 1 - Expected value of commodity: maximize 

�𝑞𝑠� 𝑝𝑙𝑠
𝑙∈𝐿𝑠𝑠∈𝑆

���𝑢𝑠𝑙𝑡𝑖𝑘𝑓(𝑑𝑘𝑖𝑡 + 𝑣𝑖)
𝐾𝑖

𝑘=1𝑖∈𝐼𝑡∈𝑇

 

Objective 2 – Expected cost of flow over all time periods: minimize 

�𝑞𝑠�𝑝𝑙𝑠� � 𝑐𝑖𝑗𝑡𝑦𝑠𝑙𝑡𝑖𝑗
(𝑖,𝑗)∈𝐴𝑡∈𝑇𝑙∈𝐿𝑠𝑠∈𝑆

 

Objective 3 – Expected profit: maximize 

�𝑞𝑠� 𝑝𝑙𝑠
𝑙∈𝐿𝑠𝑠∈𝑆

����𝑢𝑠𝑙𝑡𝑖𝑘𝑓(𝑑𝑘𝑖𝑡 + 𝑣𝑖) − � 𝑐𝑖𝑗𝑡𝑦𝑠𝑙𝑡𝑖𝑗
(𝑖,𝑗)∈𝐴

𝐾𝑖

𝑘=1𝑖∈𝐼

�
𝑡∈𝑇

 

Subject to: 

� 𝑦𝑗𝑖𝑡𝑙𝑠 − � 𝑦𝑖𝑗𝑡𝑙𝑠 = 𝑏𝑗𝑡 ∀𝑗 ∈ 𝑁{𝑢, 𝑣}, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                    (1)
(𝑖,𝑗)∈𝐴(𝑗,𝑖)∈𝐴

 

� � 𝑦𝑗𝑖𝑛𝑙𝑠 ≤ �1 − 𝑘𝑗𝑡𝑙𝑠�𝑚𝑗∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                    (2)
𝑖∈𝑊,(𝑗,𝑖)∈𝐴

𝑡+ℎ𝑗

𝜂=𝑡

 

� 𝑦𝑖𝑗𝑡𝑙𝑠 ≤ 𝑚𝑖�𝑓𝑖𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                       (3)
𝑡

𝑙=1𝑗∈𝑁,(𝑖,𝑗)∈𝐴

 

�𝑓𝑖𝑡 ≤ 1 ∀𝑖 ∈ 𝐼                                                                                                                                          (4)
𝑡∈𝑇
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𝑓𝑖1 = 1 ∀𝑖 ∈ 𝐼  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘                           (5) 

𝑟𝑗(𝑡+1) = 𝑟𝑗𝑡 − 𝑧𝑗𝑡𝜃 ∀𝑗 ∈ 𝑊, 𝑡 = 1,2, … , |𝑇| − 1                                                                                   (6) 

𝑝𝑙𝑠 = � �𝑘𝑗𝑡𝑙𝑠𝑎𝑗𝑡𝑠𝑟𝑗𝑡 + 𝑘𝑗𝑡𝑙𝑠�1 − 𝑎𝑗𝑡𝑠��1 − 𝑟𝑗𝑡� + �1 − 𝑘𝑗𝑡𝑙𝑠�� ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                       (7)
𝑡∈𝑇,𝑗∈𝑊

 

𝜇𝑠𝑙𝑡𝑖𝑘 ≤ 𝑦𝑚𝑗𝑡𝑙𝑠 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑘 = 1,2, … ,𝐾𝑖 , (𝑚, 𝑗) ∈ 𝑃𝑘𝑖                                           (8) 

�𝑒𝑗𝑡𝑧𝑗𝑡 + �𝑒𝑖𝑡𝑧𝑖𝑡 + �𝑜𝑖𝑡𝑓𝑖𝑡 ≤ 𝜁𝑡 ,∀𝑡 ∈ 𝑇                                                                                     (9)
𝑖∈𝐼𝑖∈𝐼𝑗∈𝑊

 

𝑐𝑗𝑖(𝑡+1) = 𝑐𝑗𝑖𝑡 − 𝑧𝑖𝑡𝑀 ∀(𝑗, 𝑖) ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑡 = 1,2, … , |𝑇| − 1                            (10) 

𝑑𝑘𝑖(𝑡+1) = 𝑑𝑘𝑖𝑡 − 𝑧𝑖𝑡𝑈 ∀𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖, 𝑡 = 1,2, … , |𝑇| − 1                                                 (11) 

𝑦𝑖𝑗𝑡𝑙𝑠 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                             (12) 

𝑧𝑗𝑡 ∈ {0,1} ∀𝑗 ∈ 𝑊 ∪ 𝐼, 𝑡 ∈ 𝑇                                                                                                                  (13) 

𝑓𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                            (14) 

𝑐𝑗𝑖𝑡 ≥ 0 ∀(𝑗, 𝑖) ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝑊 𝑎𝑛𝑑 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                     (15) 

�𝑐𝑗𝑖𝑡 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑎𝑟𝑐𝑠�                                                                           (16) 

𝑑𝑘𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖 , 𝑡 ∈ 𝑇                                                                                                    (17) 

𝜇𝑠𝑙𝑡𝑖𝑘 ≥ 0 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖                                                                        (18) 

0 ≤ 𝑝𝑙𝑠 ≤ 1 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                                                       (19) 

0 ≤ 𝑟𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇                                                                                                                       (20) 

 

Constraints (1) enforce flow balance at all nodes in every time period, attack plan, and 

realized scenario, while constraints (2) ensures that for each of these, flow may not pass through 

failed nodes, for the duration of the node's failure. Constraint set (3) allow flow to pass through 

only those transfer nodes that have been opened, and constraints (4) ensure that each transfer 

node is opened at most once during the planning horizon (with constraints (5) “opening" those 

transfer nodes present in the initial network). For each waterway facility in each time period, 

constraints (6) update the facility's probability of failing under attack based on whether the 

facility has been fortified. Constraint set (7) calculates the probability of each realized scenario 

occurring for each attack plan, based on the individual waterway facilities' failure probabilities. 

Constraints (8) determine the amount of flow that travels on each non-waterway path to reach the 

network sink. A budget for the investment decisions of each time period is enforced through 
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constraint set (9). Costs and commodity age values are updated in constraint sets (10) and (11) 

based on investments in transfer links.  While this model can be solved via nonlinear 

optimization software, the magnitude of decision variables is quite large.   More specifically, the 

model requires a path-based, scenario-driven, action-set description.  Any one of these three 

problem elements yields extensive complexity.  Together, this complexity is multiplicative.  In 

this case, approaches that generate both paths and scenarios in a decomposition structure provide 

an interesting avenue for future research.   Of course, the dependence between these two entities 

complicates any decomposition structure even further and raises more general methodological 

questions relative to numerous fields of study.  

 

3.4 Bi-Level Model 

This model extends the previous ones by attempting to account for both the defender and 

attacker strategies in the context of the modeling framework.  Consider a network given by a set 

of nodes, N, along with the arcset connecting those nodes, A, considered over a set of time 

periods T. Each node in the overall network has a net supply in each time period, given by the 

input parameter 𝑏𝑗𝑡  for 𝑗 ∈ 𝑁. The network contains one universal sink, u, and one universal 

source, v. Contained in N is the set of waterway infrastructure nodes, W. All source nodes (as 

well as universal source and sink nodes) are elements of W, and net supply at each node is the 

positive difference in flow from the previous node to the current. All elements of W except u and 

v are connected to intermodal transfer points (ITP), denoted by the set of I. These nodes are then 

connected to a rail/highway network, represented by a single arc from each ITP directly to the 

sink. 

It is assumed that there is a user-defined set of attack scenarios, S, with 𝑠 ∈ 𝑆 

corresponding to one attack “plan” in which the input parameter 𝑎𝑗𝑠  is 1 if facility 𝑗 ∈ 𝑊  is 

attacked under attack plan s (Note that only waterway nodes can be attacked). The decision 

variable, 𝑞𝑠𝑡 is 1 if attack scenario s is carried out in time period t and 0 otherwise. An attacked 

facility may fail or survive the attack. The probability of facility failure given an attack in time 

period t is given by the decision variables 𝑟𝑗𝑡 for facility j. The initial probabilities of facility 

failure given an attack in time period 1 are given as input parameters. For each attack plan 𝑠 ∈ 𝑆, 

then, there are a number of possible “realized scenarios”, 𝑙 ∈ 𝐿𝑠 that correspond to each possible 

combination of realized failures and survivals of facilities under attack plan s. The input 
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parameter 𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s. Each realized scenario 

𝑙 ∈ 𝐿𝑠  under attack plan 𝑠 ∈ 𝑆  will occur in time period t with probability 𝑝𝑙𝑠𝑡 , which is a 

decision variable that depends on fortification decisions to facilities in previous time periods. 

Fortification decisions are made with the decisions variable 𝑧𝑗𝑡 , which is 1 if facility 

𝑗 ∈ 𝑊  is fortified in time period t and 0 otherwise. Fortification of waterway infrastructure 

nodes, W, results in the reduction of that facility's probability of failure under attack by input 

parameter 𝜃 for each fortification action, and each fortification action of a waterway node has a 

cost of 𝑒𝑗𝑡 . The input parameter ℎ𝑗  denotes the length of disruption of facility j if it fails. 

Fortification actions of ITP nodes have an associated cost of 𝑒𝑖𝑡 and result in the reduction of the 

cost required to transfer by input parameter M. 

The decision variables 𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arcset A in 

time period t. The capacity of each node 𝑗 ∈ 𝑁 is given by 𝑚𝑗. Costs are given by 𝑐𝑖𝑗𝑡, the cost of 

traversing arc (i, j) in time period t. The cost of switching from waterway to another mode of 

transportation is reflected in the cost of arcs connecting nodes in W to nodes in I. These costs 

may be reduced by investments in the transfer components, and so the 𝑐𝑖𝑗𝑡s are decision variables 

(although costs for non-mode transfer arcs may be treated as input parameters). Transfer links 

may only be used if they have been “opened”. Resources may also be allocated to open new 

intermodal transfer links, with fixed, one-time costs of 𝑜𝑖𝑡 to open link point i in time period t. 

The binary decision variables 𝑓𝑖𝑡 represent whether a link is opened in time period t. The link 

may be used in any subsequent periods after it has been opened, and variables corresponding to 

initial links present in the first time period are set to 1. The starting network then has a set of 

initial link points as well as potential link points that are being considered. Arcs connect the 

waterway nodes in W to initial and potential link points as appropriate (each link point adjacent 

to only one waterway node; waterway nodes may be adjacent to multiple link points). Costs and 

“age values” on those arcs reflect starting values in the first time period, with costs on the 

potential link points set to “starting” cost and age values were the link to be opened. 

Decisions to improve the reliability of waterway nodes, the resilience of transfer nodes, 

and to open new transfer nodes are subject to a budget in each time period, given by input 

parameter 𝜁𝑡 . The cost to attack facility j in time period t is given by 𝜖𝑗𝑡  and the attacker is 

subject to a budget in each time period 𝐷𝑡 . 𝛽𝑠 is the base effectiveness of scenario s, which is an 
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input parameter that measures the attractiveness of each scenario. 𝛼𝑠𝑡  is the fractional 

effectiveness of scenario s in time period t, which is effectively a measure of the fraction of its 

attractiveness that scenario s has maintained. The function, 𝑓(𝑧𝑗𝑡)  calculates each scenario's 

effectiveness based on fortification decisions, and this value is divided by the scenario's base 

effectiveness to calculate its fractional effectiveness. The defender then makes fortification 

decisions in order to maximize expected profit, and the attacker makes decisions in order to 

maximize the fractional effectiveness of the chosen attack scenario.  The joint consideration of 

scenarios and attack plans results adds computational requirements beyond those that can be 

handled in a reasonable amount of time for a large-scale problem.  While this model is a unique 

contribution in terms of representing this real-world scenario, it requires for study to become 

implementable.  

 

3.4.1 Notation 

Input Parameters 
S is the set of attack plans 

T is the set of time periods 

A is the set of arcs in the network 

N is the set of nodes in the network 

W is the set of waterway nodes 

I is the set of intermodal transfer link nodes (each member of I is connected to exactly one 

member of W, but each member of W may be connected to multiple members of I) 

𝐿𝑠 is the set of realized scenarios that may occur given attack plan 𝑠 ∈ 𝑆 is carried out 

𝑎𝑗𝑠 is 1 if facility j is attacked under attack plan s and 0 otherwise 

𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s 

𝑏𝑗𝑡 is net supply in each time period for 𝑗 ∈ 𝑁 

u is the universal sink 

v is the universal source 

f(age) represents the value of one unit of commodity at a given age 

𝑣𝑖 that represents the age of the commodity as it reaches component 𝑖 ∈ 𝐼 

𝑃𝑘𝑖 is the kth path originating at point i that ends at the sink at the “bottom” of the network 
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𝐾𝑖 denotes the number of paths originating at i and ending at the demand sink 

ℎ𝑗  denotes the length of disruption of facility j if it fails 

𝑒𝑗𝑡 is the cost of fortifying facility 𝑗 ∈ 𝑊 in time period t 

𝑒𝑖𝑡 is the cost of investment in transfer point 𝑖 ∈ 𝐼 in time period t 

M is the amount by which cost of transfer is reduced if investment in transfer point 𝑖 ∈ 𝐼 occurs 

U is the amount by which the time required to transfer modes is reduced if investment in transfer 

point 𝑖 ∈ 𝐼 occurs 

𝑚𝑗 is the capacity of each node 𝑗 ∈ 𝑁 

𝑜𝑖𝑡 is the fixed, one-time cost of opening new intermodal transfer link 𝑖 ∈ 𝐼 

𝜁𝑡 is the budget for all investment decisions in time period t 

𝜃  is the amount by which a facility's probability of failure decreases given a fortification 

investment 

𝛽𝑠 is the base effectiveness of scenario s 

𝜖𝑗𝑡 is the attack cost of facility j in time period t 

𝐷𝑡 is the attack budget for time period t 

 

 

 

Decision Variables 

𝑟𝑗𝑡 is the probability of facility failure given and attack in time period t for facility j 

𝑝𝑙𝑠𝑡 is the probability that each realized scenario 𝑙 ∈ 𝐿𝑠 happens in time period t under attack 

plan 𝑠 ∈ 𝑆 (depends on fortification decisions to facilities in previous and current time 

period) 

𝑞𝑠𝑡 is 1 if attack scenario s is carried out in time period t 

𝑑𝑘𝑖𝑡 is the amount of time required to travel path 𝑃𝑘𝑖 in time period t 

𝜇𝑠𝑙𝑡𝑖𝑘 is the amount of commodity flow on path 𝑃𝑘𝑖 in each time period t of each realized 

scenario 

𝑙 ∈ 𝐿𝑠 of each attack plan 𝑠 ∈ 𝑆 
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𝑧𝑗𝑡 is 1 if facility  𝑗 ∈ 𝑊 is fortified in time period t 

𝛼𝑠𝑡 is the fractional effectiveness of scenario s in time period t 

𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arcset A in time period t under realized 

scenario l of attack plan s 

𝑐𝑖𝑗𝑡 is the cost of traversing arc (i, j) in time period t (this made change based on investment 

decisions in intermodal transfer links) 

𝑓𝑖𝑡 are binary decision variables representing whether a link to transfer point 𝑖 ∈ 𝐼 is opened in 

time period t 

𝑓(𝑧𝑗𝑡)  is the function that calculates each scenario’s effectiveness based on fortification 

decisions 

 

3.4.2 Formulation 

Using this notation, a bi-level optimization model is formulated to represent the 

competing objectives associated with this problem. The outer problem represents the defender 

whose objective is to maximize the expected profit. This profit is calculated by subtracting 

transportation cost, dependent on the mode of transportation used to ship the product, from the 

value of the commodity at its destination considering perishability by calculating end value 

based on product age. This leading problem is subject to flow balance and budgetary constraints 

and accounts for post fortification fallibility, meaning fortification actions decrease a facility's 

probability of failure under attack but does not make it immune to attack actions. The inner 

problem represents the attacker whose objective is the maximize the fractional effectiveness of 

the chosen scenario, a value that is calculated based on whether or not facilities included in that 

attack scenario have been fortified. This follower problem is subject to budgetary constraints. 

The formulation of the bi-level problem is given as 

 

Outer (Defender) Problem 

maximize ��𝑞𝑠𝑡 �𝑝𝑙𝑠
𝑙∈𝐿𝑠𝑠∈𝑆𝑡∈𝑇

���𝜇𝑠𝑙𝑡𝑖𝑘𝑓(𝑑𝑘𝑖𝑡 + 𝑣𝑖)
𝐾𝑖

𝑘=1

− � 𝑐𝑖𝑗𝑡𝑦𝑠𝑙𝑡𝑖𝑗
(𝑖,𝑗)∈𝐴𝑖∈𝐼

� 
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subject to 

� 𝑦𝑗𝑖𝑡𝑙𝑠 − � 𝑦𝑖𝑗𝑡𝑙𝑠 = 𝑏𝑗𝑡 ∀𝑗 ∈ 𝑁\
(𝑖,𝑗)∈𝐴

{𝑢, 𝑣}, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                 (1)
(𝑗,𝑖)∈𝐴

 

� � 𝑦𝑗𝑖𝜂𝑙𝑠 ≤ �1 − 𝑘𝑗𝑡𝑙𝑠�𝑚𝑗  ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                    (2)
𝑖∈𝑊,(𝑗,𝑖)∈𝐴

𝑡+ℎ𝑗

𝜂=𝑡

 

� 𝑦𝑖𝑗𝑡𝑙𝑠 ≤ 𝑚𝑖�𝑓𝑖𝑡  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                      (3)
𝑡

𝑙=1𝑗∈𝑁,(𝑖,𝑗)∈𝐴

 

�𝑓𝑖𝑡 ≤ 1 ∀𝑖 ∈ 𝐼                                                                                                                                          (4)
𝑡∈𝑇

 

𝑓𝑖1 = 1 ∀𝑖 ∈ 𝐼 such that transfer point 𝑖 is present in original network                                     (5) 

𝑟𝑗(𝑡+1) = 𝑟𝑗𝑡 − 𝑧𝑗𝑡𝜃 ∀𝑗 ∈ 𝑊, 𝑡 = 1,2, … , |𝑇| − 1                                                                                   (6) 

𝑝𝑙𝑠𝑡 = ��𝑘𝑗𝑙𝑠𝑎𝑗𝑠𝑟𝑗𝑡 + 𝑘𝑗𝑙𝑠�1 − 𝑎𝑗𝑠��1 − 𝑟𝑗𝑡� + (1 − 𝑘𝑗𝑙𝑠)� ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑠                       (7)
𝑗∈𝑊

 

𝜇𝑠𝑙𝑡𝑖𝑘 ≤ 𝑦𝑚𝑗𝑡𝑙𝑠 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑘 = 1,2, … ,𝐾𝑖 , (𝑚, 𝑗) ∈ 𝑃𝑘𝑖                                           (8) 

�𝑒𝑗𝑡𝑧𝑗𝑡 + �𝑒𝑖𝑡𝑧𝑖𝑡 + �𝑜𝑖𝑡𝑓𝑖𝑡 ≤ 𝜁𝑡 ,∀𝑡 ∈ 𝑇                                                                                     (9)
𝑖∈𝐼𝑖∈𝐼𝑗∈𝑊

 

𝑐𝑗𝑖(𝑡+1) = 𝑐𝑗𝑖𝑡 − 𝑧𝑖𝑡𝑀 ∀(𝑗, 𝑖) ∈ 𝐴 such that j ∈ W, i ∈ I, t = 1,2, … , |𝑇| − 1                               (10) 

𝑑𝑘𝑖(𝑡+1) = 𝑑𝑘𝑖𝑡 − 𝑧𝑖𝑡𝑈 ∀𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖, 𝑡 = 1,2, … , |𝑇| − 1                                                 (11) 

𝑦𝑖𝑗𝑡𝑙𝑠 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                             (12) 

𝑧𝑗𝑡 ∈ {0,1} ∀𝑗 ∈ 𝑊 ∪ 𝐼, 𝑡 ∈ 𝑇                                                                                                                  (13) 

𝑓𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                            (14) 

𝑐𝑗𝑖𝑡 ≥ 0 ∀(𝑗, 𝑖) ∈ 𝐴 such that 𝑗 ∈ 𝑊 and 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                       (15) 

�𝑐𝑗𝑖𝑡 is an input parameter for all other arcs�                                                                                   (16) 

𝑑𝑘𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖 , 𝑡 ∈ 𝑇                                                                                                    (17) 

𝜇𝑠𝑙𝑡𝑖𝑘 ≥ 0 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼,𝑘 = 1,2, … ,𝐾𝑖                                                                        (18) 

0 ≤ 𝑝𝑙𝑠 ≤ 1 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                                                       (19) 

0 ≤ 𝑟𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇                                                                                                                       (20) 

 

Inner (Attacker) Problem 
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maximize ��𝛼𝑠𝑡𝑞𝑠𝑡
𝑠∈𝑆𝑡∈𝑇

 

subject to 

��𝜖𝑗𝑡𝛼𝑗𝑠𝑞𝑠𝑡 ≤ 𝐷𝑡  ∀𝑡 ∈ 𝑇                                                                                                                 (22)
𝑗∈𝑊𝑠∈𝑆

 

�𝑞𝑠𝑡 = 1 ∀𝑡 ∈ 𝑇                                                                                                                                     (23)
𝑠∈𝑆

 

𝑓(𝑧𝑗𝑡)
𝛽𝑠

= 𝛼𝑠𝑡  ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆                                                                                                                       (24) 

𝛼𝑠𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆                                                                                                                                (25) 

𝑞𝑠𝑡 , 𝑧𝑗𝑡  binary ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑗 ∈ 𝑊                                                                                                       (26) 

 

Constraints (1) enforce flow balance at all nodes in every time period, attack plan, and 

realized scenario, while constraints (2) ensures that for each of these, flow may not pass through 

failed nodes, for the duration of the node's failure. Constraint set (3) allow flow to pass through 

only those transfer nodes that have been opened, and constraints (4) ensure that each transfer 

node is opened at most once during the planning horizon (with constraints (5) “opening” those 

transfer nodes present in the initial network). For each waterway facility in each time period, 

constraints (6) update the facility's probability of failing under attack based on whether the 

facility has been fortified. Constraint set (7) calculates the probability of each realized scenario 

occurring for each attack plan in each time period, based on the individual waterway facilities' 

failure probabilities. Constraints (8) determine the amount of flow that travels on each non-

waterway path to reach the network sink. A budget for the investment decisions of each time 

period is enforced through constraint set (9). Costs and commodity age values are updated in 

constraint sets (10) and (11) based on investments in transfer links. Constraints (22) enforce the 

attack decisions budget in each time period. Constraints (23) ensure only one scenario is carried 

out in each time period. Constraints (24) calculate the fractional effectiveness of each scenario in 

each time period.  Interestingly, the inner problem itself is challenging to solve and its structure 

does no lend itself to simplifying techniques.   
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3.5 Tactical Risk Mitigation for Adaptive Adversaries 

In this section we attempt to model an adaptive adversary in our modeling framework. 

The network is given by a set of nodes, N, along with the arc set connecting those nodes, A, 

considered over a set of time periods T. Each node in the overall network has a net supply in 

each time period, given by the input parameter 𝑏𝑗𝑡 for 𝑗 ∈ 𝑁. The network contains one universal 

sink, u, and one universal source, v. Contained in N is the set of waterway infrastructure nodes, 

W. All source nodes (as well as universal source and sink nodes) are elements of W, and net 

supply at each node is the positive difference in flow from the previous node to the current. All 

elements of W except u and v are connected to intermodal transfer points (ITP), denoted by the 

set of I. These nodes are then connected to a rail/highway network, represented by a single arc 

from each ITP directly to the sink. Each of these ITP/arc combinations has an associated input 

parameter 𝑤𝑖 that represents the per unit commodity end-value lost by transporting goods on the 

non-waterway network.  

 It is assumed that there is a user-defined set of attack scenarios, S, with 𝑠 ∈ 𝑆 corresponding 

to one attack “plan” in which the input parameter 𝑎𝑗𝑠  is 1 if facility 𝑗 ∈ 𝑊 is attacked under 

attack plan s (Note that only waterway nodes can be attacked). Similarly, there is a user-defined 

set of fortification scenarios, G, with 𝑔 ∈ 𝐺 corresponding to one fortification “plan” in which 

the input parameter 𝑧𝑗𝑔  are 1 if facility 𝑗 ∈ 𝑁  is fortified under fortification plan g. The 

probability that attack scenario 𝑠 ∈ 𝑆  is carried out in time period t is conditional on the 

fortification actions in the previous period and is given by the input parameter 𝑞𝑠𝑡𝑔. An attacked 

facility may fail or survive the attack. The probability of facility failure given an attack in time 

period t is given by the decision variables 𝑟𝑗𝑡 for facility j. The initial probabilities of facility 

failure given an attack in time period 1 are given as input parameters. For each attack plan 𝑠 ∈ 𝑆, 

then, there are a number of possible “realized scenarios”, 𝑙 ∈ 𝐿𝑠 that correspond to each possible 

combination of realized failures and survivals of facilities under attack plan s. The input 

parameter 𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s. Each realized scenario 

𝑙 ∈ 𝐿𝑠  under attack plan 𝑠 ∈ 𝑆  will occur in time period t with probability 𝑝𝑙𝑠𝑡 , which is a 

decision variable that depends on fortification decisions to facilities in previous time periods. 

Fortification decisions are made with the decisions variable 𝑥𝑔𝑡, which is 1 if fortification 

plan g is carried out in time period t and 0 otherwise. Fortification of waterway infrastructure 
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nodes, W, results in the reduction of that facility's probability of failure under attack by input 

parameter 𝜃 for each fortification action, and each fortification action of a waterway node has a 

cost of 𝑒𝑗𝑡 . The input parameter ℎ𝑗  denotes the length of disruption of facility j if it fails. 

Fortification actions of ITP nodes have an associated cost of 𝑒𝑖𝑡 and result in the reduction of the 

cost required to transfer by input parameter M. 

The decision variables 𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arc set A in 

time period t. The capacity of each node 𝑗 ∈ 𝑁 is given by 𝑚𝑗. Costs are given by 𝑐𝑖𝑗𝑡, the cost of 

traversing arc (i, j) in time period t. The cost of switching from waterway to another mode of 

transportation is reflected in the cost of arcs connecting nodes in W to nodes in I. These costs 

may be reduced by investments in the transfer components, and so the 𝑐𝑖𝑗𝑡s are decision variables 

(although costs for non-mode transfer arcs may be treated as input parameters). Transfer links 

may only be used if they have been “opened”. Resources may also be allocated to open new 

intermodal transfer links, with fixed, one-time costs of 𝑜𝑖𝑡 to open link point i in time period t. 

The binary decision variables 𝑓𝑖𝑡 represent whether a link is opened in time period t. The link 

may be used in any subsequent periods after it has been opened, and variables corresponding to 

initial links present in the first time period are set to 1. The starting network then has a set of 

initial link points as well as potential link points that are being considered. Arcs connect the 

waterway nodes in W to initial and potential link points as appropriate (each link point adjacent 

to only one waterway). Costs on those arcs reflect starting values in the first time period, with 

costs on the potential link points set to “starting” cost and were the link to be opened. 

Decisions to improve the reliability of waterway nodes, the resilience of transfer nodes, 

and to open new transfer nodes are subject to a budget in each time period, given by input 

parameter 𝜁𝑡. Decisions are then made in order to minimize the system cost of disruption, which 

requires an input parameter, 𝐷𝑡, representing the ideal travel cost of the network if all goods were 

transported on the waterway. 

 

3.5.1 Notation 

Input Parameters 

S is the set of attack plans 

G is the set of fortification plans 

T is the set of time periods 
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A is the set of arcs in the network 

N is the set of nodes in the network 

W is the set of waterway nodes 

I is the set of intermodal transfer link nodes (each member of I is connected to exactly one 

member of W, but each member of W may be connected to multiple members of I) 

𝐿𝑠 is the set of realized scenarios that may occur given attack plan 𝑠 ∈ 𝑆 is carried out 

𝑎𝑗𝑠 is 1 if facility j is attacked under attack plan s and 0 otherwise 

𝑞𝑠𝑡𝑔 is the conditional probability that attack scenario 𝑠 ∈ 𝑆 is carried out in time period t given 

the fortification plan 𝑔 ∈ 𝐺 chosen in time period t – 1 

𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s 

𝑏𝑗𝑡 is net supply in each time period for 𝑗 ∈ 𝑁 

u is the universal sink 

v is the universal source 

ℎ𝑗  denotes the length of disruption of facility j if it fails 

𝑒𝑗𝑡 is the cost of fortifying facility 𝑗 ∈ 𝑊 in time period t 

𝑒𝑖𝑡 is the cost of investment in transfer point 𝑖 ∈ 𝐼 in time period t 

M is the amount by which cost of transfer is reduced if investment in transfer point 𝑖 ∈ 𝐼 occurs 

𝑚𝑗 is the capacity of each node 𝑗 ∈ 𝑁 

𝑜𝑖𝑡 is the fixed, one-time cost of opening new intermodal transfer link 𝑖 ∈ 𝐼 

𝜁𝑡 is the budget for all investment decisions in time period t 

𝜃  is the amount by which a facility's probability of failure decreases given a fortification 

investment 

𝑤𝑖 is the per unit profit loss associated with using ITP i 

𝐷𝑡 is the attack budget for time period t 

𝑗 ∈ 𝑊 is fortified in fortification scenario 𝑔 ∈ 𝐺 and 0 otherwise 

Decision Variables 

𝑟𝑗𝑡 is the probability of facility failure given an attack in time period t for facility j 

𝑝𝑙𝑠𝑡 is the probability that each realized scenario 𝑙 ∈ 𝐿𝑠 happens in time period t under attack 

plan 
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𝑠 ∈ 𝑆 (depends on fortification decisions to facilities in previous and current time period) 

𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arcset A in time period t under realized 

scenario l of attack plan s 

𝑐𝑖𝑗𝑡 is the cost of traversing arc (i, j) in time period t (this made change based on investment 

decisions in intermodal transfer links) 

𝑓𝑖𝑡 are binary decision variables representing whether a link to transfer point 𝑖 ∈ 𝐼 is opened in 

time period t 

𝑥𝑔𝑡 is 1 if fortification plan g is carried out in time period t 

 

3.5.2 Formulation 

Objective – System Disruption Cost: 

minimize ���𝑞𝑠𝑡𝑔𝑥𝑔(𝑡−1) �𝑝𝑙𝑠 ��𝑤𝑖𝑦𝑖𝑢𝑡𝑙𝑠 + � � 𝑐𝑖𝑗𝑡𝑦𝑠𝑙𝑡𝑖𝑗 − 𝐷𝑡
(𝑖,𝑗)∈𝐴

�
𝑖∈𝐼

�
𝑙∈𝐿𝑠𝑔∈𝐺𝑠∈𝑆𝑡∈𝑇

 

subject to 

� 𝑦𝑗𝑖𝑡𝑙𝑠 − � 𝑦𝑖𝑗𝑡𝑙𝑠 = 𝑏𝑗𝑡 ∀𝑗 ∈ 𝑁\
(𝑖,𝑗)∈𝐴

{𝑢, 𝑣}, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                 (1)
(𝑗,𝑖)∈𝐴

 

� � 𝑦𝑗𝑖𝜂𝑙𝑠 ≤ �1 − 𝑘𝑗𝑡𝑙𝑠�𝑚𝑗  ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                    (2)
𝑖∈𝑊,(𝑗,𝑖)∈𝐴

𝑡+ℎ𝑗

𝜂=𝑡

 

� 𝑦𝑖𝑗𝑡𝑙𝑠 ≤ 𝑚𝑖�𝑓𝑖𝑡  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                      (3)
𝑡

𝑙=1𝑗∈𝑁,(𝑖,𝑗)∈𝐴

 

�𝑓𝑖𝑡 ≤ 1 ∀𝑖 ∈ 𝐼                                                                                                                                          (4)
𝑡∈𝑇

 

𝑓𝑖1 = 1 ∀𝑖 ∈ 𝐼 such that transfer point 𝑖 is present in original network                                     (5) 

𝑟𝑗(𝑡+1) = 𝑟𝑗𝑡 − 𝑧𝑗𝑡𝜃 ∀𝑗 ∈ 𝑊, 𝑡 = 1,2, … , |𝑇| − 1                                                                                   (6) 

𝑝𝑙𝑠𝑡 = ��𝑘𝑗𝑙𝑠𝑎𝑗𝑠𝑟𝑗𝑡 + 𝑘𝑗𝑙𝑠�1 − 𝑎𝑗𝑠��1 − 𝑟𝑗𝑡� + (1 − 𝑘𝑗𝑙𝑠)� ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑠                       (7)
𝑗∈𝑊
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�𝑥𝑔𝑡 ≤ 1 ∀𝑡 ∈ 𝑇                                                                                                                                       (8)
𝑔∈𝐺

 

��𝑒𝑗𝑡
𝑔∈𝐺

𝑧𝑖𝑔𝑥𝑔𝑡 + ��𝑒𝑖𝑡
𝑔∈𝐺

𝑧𝑖𝑔𝑥𝑔𝑡 + �𝑜𝑖𝑡𝑓𝑖𝑡 ≤ 𝜁𝑡 ,∀𝑡 ∈ 𝑇                                                        (9)
𝑖∈𝐼𝑖∈𝐼𝑗∈𝑊

 

𝑐𝑗𝑖(𝑡+1) = 𝑐𝑗𝑖𝑡 − ��𝑧𝑖𝑔𝑥𝑔𝑡
𝑔∈𝐺

�𝑀 ∀(𝑗, 𝑖) ∈ 𝐴 such that j ∈ W, i ∈ I, t = 1,2, … , |𝑇| − 1           (10) 

𝑦𝑖𝑗𝑡𝑙𝑠 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                             (11) 

𝑓𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                            (12) 

𝑥𝑔𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                          (13) 

𝑐𝑗𝑖𝑡 ≥ 0 ∀(𝑗, 𝑖) ∈ 𝐴 such that 𝑗 ∈ 𝑊 and 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                       (14) 

�𝑐𝑗𝑖𝑡 is an input parameter for all other arcs�                                                                                   (15) 

0 ≤ 𝑝𝑙𝑠 ≤ 1 ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                                                       (16) 

0 ≤ 𝑟𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇                                                                                                                       (17) 

 

Constraints (1) enforce flow balance at all nodes in every time period, attack plan, and 

realized scenario, while constraints (2) ensures that for each of these, flow may not pass through 

failed nodes, for the duration of the node's failure. Constraint set (3) allow flow to pass through 

only those transfer nodes that have been opened, and constraints (4) ensure that each transfer 

node is opened at most once during the planning horizon (with constraints (5) “opening” those 

transfer nodes present in the initial network). For each waterway facility in each time period, 

constraints (6) update the facility's probability of failing under attack based on whether the 

facility has been fortified. Constraint set (7) calculates the probability of each realized scenario 

occurring for each attack plan in each time period, based on the individual waterway facilities' 

failure probabilities. Constraints (8) ensure at most one fortification plan is chosen in each time 

period. A budget for the investment decisions of each time period is enforced through constraint 

set (9). Costs are updated in constraint set (10) based on investments in transfer links. 

 

3.6 Mitigating Dynamic Risk in Multi-Modal Perishable Commodity Supply Chain Networks 

In this model formulation, the network is given by a set of nodes, N, along with the arc 

set connecting those nodes, A, considered over a set of time periods T. Each node in the overall 
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network has a net supply in each time period, given by the input parameter 𝑏𝑗𝑡 for 𝑗 ∈ 𝑁. The 

network contains one universal sink, u, and one universal source, v. Contained in N is the set of 

waterway infrastructure nodes, W. All source nodes (as well as universal source and sink nodes) 

are elements of W, and net supply at each node is the positive difference in flow from the 

previous node to the current. All elements of W except u and v are connected to intermodal 

transfer points (ITP), denoted by the set of I. These nodes are then connected to a rail/highway 

network, represented by a single arc from each ITP directly to the sink. Each of these ITP/arc 

combinations has an associated input parameter 𝑤𝑖 that represents the per unit commodity end-

value lost by transporting goods on the non-waterway network.  

It is assumed that there is a user-defined set of attack scenarios, S, with 𝑠 ∈ 𝑆 

corresponding to one attack “plan” in which the input parameter 𝑎𝑗𝑠  is 1 if facility 𝑗 ∈ 𝑊  is 

attacked under attack plan s (Note that only waterway nodes can be attacked). Similarly, there is 

a user-defined set of fortification scenarios, G, with 𝑔 ∈ 𝐺 corresponding to one fortification 

“plan” in which the input parameter 𝑧𝑗𝑔 are 1 if facility 𝑗 ∈ 𝑁 is fortified under fortification plan 

g. The probability that attack scenario 𝑠 ∈ 𝑆 is carried out in time period t is conditional on the 

fortification actions in the previous period and is given by the input parameter 𝑞𝑠𝑡𝑔. An attacked 

facility may fail or survive the attack. The probability of facility failure given an attack in time 

period t is given by the decision variables 𝑟𝑗𝑡 for facility j. The initial probabilities of facility 

failure given an attack in time period 1 are given as input parameters. For each attack plan 𝑠 ∈ 𝑆, 

then, there are a number of possible “realized scenarios”, 𝑙 ∈ 𝐿𝑠 that correspond to each possible 

combination of realized failures and survivals of facilities under attack plan s. The input 

parameter 𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s. Each realized scenario 

𝑙 ∈ 𝐿𝑠  under attack plan 𝑠 ∈ 𝑆  will occur in time period t with probability 𝑝𝑙𝑠𝑡 , which is a 

decision variable that depends on fortification decisions to facilities in previous time periods. 

Fortification decisions are made with the decisions variable 𝑥𝑔𝑡, which is 1 if fortification 

plan g is carried out in time period t and 0 otherwise. Fortification of waterway infrastructure 

nodes, W, results in the reduction of that facility's probability of failure under attack by input 

parameter 𝜃 for each fortification action, and each fortification action of a waterway node has a 

cost of 𝑒𝑗𝑡 . The input parameter ℎ𝑗  denotes the length of disruption of facility j if it fails. 

Fortification actions of ITP nodes have an associated cost of 𝑒𝑖𝑡 and result in the reduction of the 



 

 

44 Mitigating Dynamic Risk in Multi-Modal Perishable Commodity Supply Chain Networks  

4/30/2014 

cost required to transfer by input parameter M. The decision variables 𝑦𝑖𝑗𝑡𝑙𝑠  represent the 

magnitude of flow on arc (i, j) in arc set A in time period t. The capacity of each node 𝑗 ∈ 𝑁 is 

given by 𝑚𝑗. Costs are given by 𝑐𝑖𝑗𝑡, the cost of traversing arc (i, j) in time period t. The cost of 

switching from waterway to another mode of transportation is reflected in the cost of arcs 

connecting nodes in W to nodes in I. These costs may be reduced by investments in the transfer 

components, and so the 𝑐𝑖𝑗𝑡s are decision variables (although costs for non-mode transfer arcs 

may be treated as input parameters). Transfer links may only be used if they have been “opened”. 

Resources may also be allocated to open new intermodal transfer links, with fixed, one-time 

costs of 𝑜𝑖𝑡  to open link point i in time period t. The binary decision variables 𝑓𝑖𝑡  represent 

whether a link is opened in time period t. The link may be used in any subsequent periods after it 

has been opened, and variables corresponding to initial links present in the first time period are 

set to 1. The starting network then has a set of initial link points as well as potential link points 

that are being considered. Arcs connect the waterway nodes in W to initial and potential link 

points as appropriate (each link point adjacent to only one waterway). Costs on those arcs reflect 

starting values in the first time period, with costs on the potential link points set to “starting” cost 

and were the link to be opened. Decisions to improve the reliability of waterway nodes, the 

resilience of transfer nodes, and to open new transfer nodes are subject to a budget in each time 

period, given by input parameter 𝜁𝑡. Decisions are then made in order to minimize the system 

cost of disruption, which requires an input parameter, 𝐷𝑡, representing the ideal travel cost of the 

network if all goods were transported on the waterway. 

 

3.6.1 Notation 

 

Sets 

u is the universal sink 

v is the universal source 

S is the set of attack plans 

G is the set of fortification plans 

T is the set of time periods 

A is the set of arcs in the network 

N is the set of nodes in the network 
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W is the set of waterway nodes 

I is the set of intermodal transfer link nodes (each member of I is connected to exactly one 

member of W, but each member of W may be connected to multiple members of I) 

𝐿𝑠 is the set of realized scenarios that may occur given attack plan 𝑠 ∈ 𝑆 is carried out 

 

Pre-Assigned Parameters 

𝑎𝑗𝑠 is 1 if facility j is attacked under attack plan s and 0 otherwise 

𝑧𝑗𝑔 is 1 if facility 𝑗 ∈ 𝑊 is fortified in fortification scenario 𝑔 ∈ 𝐺 

𝑞𝑠𝑡𝑔 is the conditional probability that attack scenario 𝑠 ∈ 𝑆 is carried out in time period t given 

the fortification plan 𝑔 ∈ 𝐺 chosen in time period t – 1 

𝑘𝑗𝑙𝑠 is 1 if facility j fails in realized scenario l of attack plan s 

𝑏𝑗𝑡 is net supply in each time period for 𝑗 ∈ 𝑁 

ℎ𝑗  denotes the length of disruption of facility j if it fails 

𝑒𝑗𝑡 is the cost of fortifying facility 𝑗 ∈ 𝑊 in time period t 

𝑒𝑖𝑡 is the cost of investment in transfer point 𝑖 ∈ 𝐼 in time period t 

M is the amount by which cost of transfer is reduced if investment in transfer point 𝑖 ∈ 𝐼 occurs 

𝑚𝑗 is the capacity of each node 𝑗 ∈ 𝑁 

𝑜𝑖𝑡 is the fixed, one-time cost of opening new intermodal transfer link 𝑖 ∈ 𝐼 

𝜁𝑡 is the budget for all investment decisions in time period t 

𝜃  is the amount by which a facility's probability of failure decreases given a fortification 

investment 

𝑤𝑖 is the per unit profit loss associated with using ITP i 

𝐷𝑡 is the attack budget for time period t 

 

 

Decision Variables 

𝑟𝑗𝑡 is the probability of facility failure GIVEN AN ATTACK in time period t for facility j 
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𝑝𝑙𝑠𝑡 is the probability that each realized scenario 𝑙 ∈ 𝐿𝑠 happens in time period t under attack 

plan 

𝑠 ∈ 𝑆 (depends on fortification decisions to facilities in previous and current time period) 

𝑦𝑖𝑗𝑡𝑙𝑠 represent the magnitude of flow on arc (i, j) in arcset A in time period t under realized 

scenario l of attack plan s 

𝑐𝑖𝑗𝑡 is the cost of traversing arc (i, j) in time period t (this made change based on investment 

decisions in intermodal transfer links) 

𝑓𝑖𝑡 are binary decision variables representing whether a link to transfer point 𝑖 ∈ 𝐼 is opened in 

time period t 

𝑥𝑔𝑡 is 1 if fortification plan g is carried out in time period t 

 

3.6.2 Formulation 

minimize ���𝑞𝑠𝑡𝑔𝑥𝑔(𝑡−1) �𝑝𝑙𝑠𝑡 ��𝑤𝑖𝑦𝑖𝑢𝑡𝑙𝑠 + � � 𝑐𝑖𝑗𝑡𝑦𝑖𝑗𝑡𝑙𝑠 − 𝐷𝑡
(𝑖,𝑗)∈𝐴

�
𝑖∈𝐼

�
𝑙∈𝐿𝑠𝑔∈𝐺𝑠∈𝑆

𝑇

𝑡=2

+ �𝑞𝑠�𝑝𝑙𝑠1 ��𝑤𝑖𝑦𝑖𝑢𝑙1𝑠 + � � 𝑐𝑖𝑗1𝑦𝑖𝑗1𝑙𝑠 − 𝐷1
(𝑖,𝑗)∈𝐴

�
𝑖∈𝐼

�
𝑙∈𝐿𝑠𝑠∈𝑆

 

subject to 

� 𝑦1𝑖𝑡𝑠𝑙 = 𝑏1𝑡 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                                   (1)
(1,𝑖)∈𝐴

 

� 𝑦𝑗𝑖𝑡𝑙𝑠 − � 𝑦𝑖𝑗𝑡𝑙𝑠 = 𝑏𝑗𝑡 ∀𝑗 ∈ 𝑁\
(𝑖,𝑗)∈𝐴

{𝑢, 𝑣}, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                 (2)
(𝑗,𝑖)∈𝐴

 

� � 𝑦𝑗𝑖𝜂𝑙𝑠 ≤ �1 − 𝑘𝑗𝑡𝑙𝑠�𝑚𝑗  ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                    (3)
𝑖∈𝑊,(𝑗,𝑖)∈𝐴

𝑡+ℎ𝑗

𝜂=𝑡

 

� 𝑦𝑗𝑖𝑡𝑠𝑙 ≤ 𝑚𝑗  ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                  (4)
𝑖∈𝐼,(𝑗,𝑖)∈𝐴

 

𝑦𝑖𝑢𝑡𝑠𝑙 ≤ 𝑚𝑖�𝑓𝑖𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠

𝑡

𝑡=1

                                                                                       (5) 
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�𝑓𝑖𝑡 ≤ 1 ∀𝑖 ∈ 𝐼                                                                                                                                          (6)
𝑡∈𝑇

 

𝑟𝑗(𝑡+1) = 𝑟𝑗𝑡 − ��𝑧𝑖𝑔𝑥𝑔𝑡
𝑔∈𝐺

�𝜃 ∀𝑗 ∈ 𝑊, 𝑡 = 1,2, … , |𝑇| − 1                                                               (7) 

𝑝𝑙𝑠𝑡 = ��𝑘𝑗𝑙𝑠𝑎𝑗𝑠𝑟𝑗𝑡 + 𝑘𝑗𝑙𝑠�1 − 𝑎𝑗𝑠��1 − 𝑟𝑗𝑡� + (1 − 𝑘𝑗𝑙𝑠)� ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑠                       (8)
𝑗∈𝑊

 

𝑐𝑗𝑖(𝑡+1) = 𝑐𝑗𝑖𝑡 − ��𝑧𝑖𝑔𝑥𝑔𝑡�𝑓𝑖𝜇

𝑡

𝜇=1𝑔∈𝐺

�𝑀 ∀(𝑗, 𝑖) ∈ 𝐴𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝑊, 𝑖 ∈ 𝐼,

𝑡 = 1,2, … , |𝑇| − 1                                                                                                            (9) 
�𝑥𝑔𝑡 = 1 ∀𝑡 = 1,2, … , |𝑇| − 1                                                                                                           (10)
𝑔∈𝐺

 

𝑥𝑔𝑡 = 0 ∀𝑔 ∈ 𝐺, 𝑡 = |𝑇|                                                                                                                           (11) 

��𝑒𝑗𝑡
𝑔∈𝐺

𝑧𝑗𝑔𝑥𝑔𝑡 + ��𝑒𝑖𝑡
𝑔∈𝐺

𝑧𝑖𝑔𝑥𝑔𝑡 + �𝑜𝑖𝑡𝑓𝑖𝑡 ≤ 𝜁𝑡 ,∀𝑡 ∈ 𝑇                                                     (12)
𝑖∈𝐼𝑖∈𝐼𝑗∈𝑊

 

0 ≤ 𝑝𝑙𝑠𝑡 ≤ 1 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                                          (13) 

0 ≤ 𝑟𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝑊, 𝑡 ∈ 𝑇                                                                                                                       (14) 

𝑦𝑖𝑗𝑡𝑠𝑙 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿𝑠                                                                                             (15) 

𝑐𝑖𝑗𝑡 ≥ 0 ∀(𝑗, 𝑖) ∈ 𝐴 such that 𝑗 ∈ 𝑊 and 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                       (16) 

𝑓𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                            (17) 

𝑥𝑔𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                                                                                          (18) 

 

Constraint (1) ensures that the source node moves the net supply to the legitimate node. 

Constraint (2) is the flow balance constraint. Constraint (3) guarantees that if a node fails, then it 

cannot transport the goods until the failure is eliminated. Constraint (4) allows the movement of 

goods from facility nodes to the related ITPs. Constraint (5) ensures that if an ITP is not open, 

then it cannot flow the goods. Constraint (6) guarantees that an ITP can be opened at most once 

during the planning horizon. Constraint (7) updates the probability of node failures by 

considering the fortification actions applied in the previous period. Constraint (8) calculates the 

probability of each realized scenario for each attack plan in each time period, based on the 

probability of node failures. Constraint (9) updates the cost of moving the goods by considering 
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the investments in ITPs. Constraint (10) enforces that exactly one fortification plan must be 

utilized in each period. Constraint (11) guarantees that there will be no fortification during the 

last period. Constraint (12) is the budget constraint. Constraints (13) to (16) are the sign 

restrictions and constraints (17) and (18) define the binary variables. 

Appendix A summarizes an alternate modeling approach to the problem described in the 

earlier sections.  In Appendix A, a multi-objective, multi-period, bi-level attacker defender 

mixed integer linear programming approach is defined.  Both of the outer and inner optimization 

models are capital budgeting problems with constraints on “losses” due to attacks.  Each separate 

adversarial objective or strategy is modeled as a different loss function. Each loss function 

represents a different level of network disruption.  This modeling framework draws upon robust 

optimization ideas using a conditional variance at risk approach.   

 

4 Model Analyses 

The focus of this research was the development of a portfolio of new optimization models 

that account for dynamic fallible fortification and mitigating risk against adaptive adversaries.  

As discussed with the models in Section 3, there are a host of challenges surrounding these new 

modeling frameworks.  In an effort to begin exploration into these approaches, we considered 

black-box solvers for the single-objective problem variants proposed in Section 3.5 and 3.6 and 

developed heuristic approaches for the bi-level model described in Section 3.4.   

In each the fortification planning models studied, the resulting formulation was a 

nonconvex mixed-integer linear program. To handle this, we utilized the open-source nonlinear 

solver Couenne.  In our experimentation, representative small models could be solved to 

optimality in a reasonable time.  However, the key factor driving solution was both the number 

of scenarios accounted for and the number of response action states available to the adversary.  

Obviously, the more scenarios available to the decision-maker, the more possibilities that can be 

considered.  However, it also clear that each of these scenarios is associated with a low 

probability event that is difficult to estimate.  This raises the challenge of how to obtain accurate 

input data for models larger than those explored in our work.  This separate area of concern 

should be of particular interest to researchers interested in the accurate elicitation of probabilities 

for threat-events. 
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For bi-level problems, we developed a co-evolutionary heuristic approach. As stated 

earlier, the concept of bi-level co-evolutionary heuristics is to maintain two separate populations, 

one for each of the bi-level sub-problems. These populations are separately manipulated and then 

information is periodically exchanged between them.  In our method, genetic algorithms are 

performed separately on two populations, one for the attacker problem and one for the defender 

problem. The chromosomes for both populations are of an identical structure. That is, all 

chromosomes contain genes for both defender and attacker decisions. Genetic algorithms are 

performed separately on each of these populations. For the defender problem population, 

chromosome fitness is determined based on the defender objective to maximize expected profit. 

Similarly for the attacker problem population, fitness is determined based on the attacker 

objective to maximize the fractional effectiveness of the selected attack scenario. For each 

solution in both populations, the global genetic algorithm fitness is tested. To determine the 

global fitness of a chromosome, first the defender and attacker objectives are calculated for that 

chromosome. These values are subtracted from the objective value of the optimal solution to 

each sub-problem. These differences are normalized and summed to determine the global fitness 

value. This value is then minimized to determine the global solution to the problem.  The global 

fitness calculation ensures that the global solution is a tradeoff solution for the two objectives. 

The procedure described provided solutions in quickly.  The main challenge faced was how to 

assess the solutions obtained.  Our investigation suggested that a tradeoff solution was an 

appropriate starting point for the development of a robust set of fortification decisions. Given the 

lack of alternative methods to compare against, this hypothesis remains in place and this work 

serves to provide a baseline approach for which additional bi-level heuristic work for adaptive 

adversarial settings can be measured.    

5 Conclusions and Future Work 

 This goal of this effort was to explore modeling paradigms for developing decision support 

tools capable of assisting homeland security and inland waterway infrastructure managers with 

allocating scarce resources to mitigate risks across inland waterway infrastructure in order to 

reduce the risk of supply chain disruptions in the inland waterways.  The models developed as 

part of this effort represent an initial step in trying to characterize the complex behavior 

associated with an adaptive advisory.  The models formulated as part of this effort each present a 
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unique set of challenges when it comes to solution approaches for problems of reasonable sizes.  

While these are strategic decisions, and would only need to be made 1 a year or at most 

quarterly, the complexity of the current model formulations make that a challenge for even 

reasonably sized problems. Future research is needed to explore solution methods that will 

enable us to deal with the non-linearity’s associated with the perishability issues, the stochastic 

elements associated with the probabilistic variables and extensive set of possible scnearios, and 

the complexity that arises in a bi-level modeling framework.  Future efforts will focus on 

exploring reasonable solution approaches for this class of models.  
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Appendix A 

Reliable Network Interdiction-Fortification Problem for Inland Waterways 

 

1 Problem Description 

 The goal of this appendix is explore ways to solve the Reliable Network Interdiction-

Fortification Problem (RNIFP) for inland waterways, specifically the Upper Mississippi given an 

attacker who can switch among multiple attack strategies in response to the fortifications. We are 

particularly concerned about perishable commodities such as grain, whose value diminishes with 

time due to spoilage and therefore are sensitive to delays caused by network disruptions. 

2  High-level Model 

 The Multiperiod Robust Network Fortification Problem with Adaptive Adversary (MRNFP-

AA) is modeled here as a multi-objective multi-period bi-level attacker-defender MILP.  Both 

the outer and inner optimization models are capital budgeting models with constraints on 

“losses” due to attacks. Each separate adversarial objective or strategy is modeled as a different 

loss function. Each loss functions is a different measure of network disruption. This model draws 

on robust optimization ideas. 

2.0.1 Attacker's Problem Statement 

 Given 𝐺 = (𝑁,𝐴), a time-expanded capacitated water transportation network for perishable 

commodities, and a set of measures of network disruption (loss functions, which capture 

transportation and spoilage costs) corresponding to different attack strategies, choose 𝑦, the set 

of nodes to attack, by following the strategy that results in the largest losses, subject to an attack 

budget 𝐵0𝑡 , the defender's fortification efforts 𝑤 and 𝑥, uncertain attack success 𝑝, and post-

fortification fallibility 𝑟. 

2.0.2 Defender's Problem Statement 

Given 𝐺 = (𝑁,𝐴) , a time-expanded capacitated water transportation network for perishable 

commodities, and an attacker with multiple strategies as described above, determine which nodes 

(that is, locks) to reinforce against attack (𝑤) or to add intermodal transfer capacity to 𝑥 in order 

to minimize the attacker's ability to disrupt the network, no matter which strategy and loss 
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function they to use, subject to budget constraints 𝐵1𝑡 , uncertain attack success 𝑝, and post-

fortification fallibility 𝑟. As currently formulated, the inner problem is a robust optimization 

model. This model uses probability information to relax the uncertainty set by discarding the 

least probable 1 − 𝛽𝑖 % of possible attacks. 

2.1 Parameters 

• 𝐺 = (𝑁,𝐴): A directed graph. Nodes represent locks or dams and arcs represent pools. 

• 𝑇: The set of time periods in the model, indexed by 𝑡. 

• 𝐼: The index set of loss functions, indexed by 𝑖. 

• 𝑎𝑗: The cost to attack node 𝑗 ∈ 𝑁. 

• 𝑏𝑗: The cost to open an IMTF at node 𝑗 ∈ 𝑁. 

• 𝑐𝑗: The cost to fortify node 𝑗 ∈ 𝑁. 

• 𝐵0𝑡: The attacker's budget for period 𝑡 ∈ 𝑇. 

• 𝐵1𝑡: The defender's budget for period 𝑡 ∈ 𝑇. 

• 𝑃𝑗: Before reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝑟𝑗: After reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝛽𝑖 ∈ (0, 1): Probability threshold for each attacker objective 𝑖 ∈ 𝐼. 

• 𝐿𝑖(𝑤, 𝑥,𝑦;  p, r): A function that measures the loss for each feasible triple of decisions 

(𝑤, 𝑥,𝑦) given node failure probabilities (𝑝, 𝑟)  according to attacker objective 𝑖 ∈ 𝐼 . 

Since attack successes are uncertain, 𝐿𝑖 is a random variable. The sample space of 𝐿𝑖 is 

Ω𝑖 ⊆  ℝ . 

• 𝒰𝛽𝑖
𝑖 ⊂ Ω𝑖  is the uncertainty set for each attacker objective 𝑖 ∈ 𝐼 , defined so that 

𝑃𝑟�𝒰𝛽𝑖
𝑖 � = 𝛽𝑖 , and for all 𝑙𝑖 ∈ 𝒰𝛽𝑖

𝑖  and 𝑙′𝑖 ∈ Ω𝑖\𝒰𝛽𝑖
𝑖 , 𝑃𝑟(𝑙𝑖) > 𝑃𝑟(𝑙′𝑖). In other words, 

𝒰𝛽𝑖
𝑖  contains the most probable 𝛽𝑖% of losses for objective 𝑖 ∈ 𝐼. 

2.2 Decision Variables 

• 𝑤𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑤𝑗𝑡 = 1 if a fortification action is applied to node 𝑗 in period 

𝑡 ∈ 𝑇, and 0 otherwise. 

• 𝑥𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑥𝑗𝑡 = 1 if an IMTF is constructed during period 𝑡 ∈ 𝑇, and 0 

otherwise. 
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• 𝑦𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑦𝑗𝑡 = 1 if node j is attacked in period 𝑡 ∈ 𝑇, and 0 otherwise. 

• 𝐿: The maximum loss from all the loss functions 𝐿𝑖 ∈ 𝐼 over the most likely 𝛽% of losses 

for each loss function 𝐿𝑖. 

2.3 Outer Problem: Attacker 

 Maximize 𝐻(𝑤, 𝑥, 𝑧) (1)  

 Subject to: 

 ∑ 𝑎𝑗 𝑦𝑗𝑡𝑗∈𝑁 ≤ 𝐵0𝑡    ∀𝑡 ∈ 𝑇 (2)  

 𝑦𝑗 ∈ {0, 1}    ∀𝑗 ∈ 𝑁 (3)  

2.4 Inner Problem: Defender 

 𝐻(𝑤, 𝑥, 𝑧)= Minimize 𝐿 (4)  

 Subject to: 

 ∑ 𝑐𝑗 𝑤𝑗𝑡 + 𝑏𝑗𝑥𝑗𝑡𝑗∈𝑁 ≤ 𝐵1𝑡    ∀𝑡 ∈ 𝑇 (5)  

 𝐿 ≥ 𝐿𝑖(𝑤, 𝑥,𝑦)   ∀𝑖 ∈ 𝐼 (6)  

𝐿𝑖(𝑤, 𝑥,𝑦) ∈ 𝒰𝛽𝑖
𝑖     ∀𝑖 ∈ 𝐼 (7)  

𝑤𝑗𝑡, 𝑥𝑗𝑡 ∈ {0, 1}    ∀𝑗 ∈ 𝑁,∀𝑡 ∈ 𝑇 (8)  

2.5  Modeling Reinforcement and Loss 

 This model captures the attacker's changing objectives in the inner objective function. The 

attacker is always trying to maximize the defender's minimum loss, but they will try to attack the 

least-defended aspect of the system and force the defender to spread their resources thinly. The 

changing objectives are modeled as different loss functions in the inner objective function. Some 

of these loss functions operate at different scales and therefore some experimentation will be 

required to harmonize them. 

  A successful attack is modeled as closing a node for several periods. Reinforcement 

actions reduce the number of periods that a node remains closed and/or the loss due to node 

closure. They also reduce the probability of a successful attack. The other possible action is 

building an intermodal transfer facility (IMTF), which reduces the cost and time to transfer cargo 

from the river to rail or roads. 
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2.5.1 Economic Loss 

  The first loss function captures the direct economic loss due to node closure. The value of 

flow through a node during the period 𝑡 is denoted by 𝜆𝑗𝑡 and includes spoilage cost as well as 

transportation. During a successful attack on an unreinforced node without an IMTF, all flow is 

assumed to be destroyed - i.e. the loss is𝜆𝑗𝑡. In subsequent periods the flow must be offloaded at 

smaller riverside docks, which have greatly reduced capacity compared to water transport. This 

capacity restriction results in a 𝛿1𝑗𝑡% increase in total cost, much of which is due to spoilage 

while waiting to unload, although transportation cost increases as well. A second successful 

attack on a closed node extends the closure period. 

  Constructing an IMTF reduces the cost to offload product onto rail and trucks by 𝛿2𝑗𝑡%; 

that is, the marginal cost increase is 𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡). The cost increases are indexed by time 

because transportation rates vary by season and because capacity restrictions may result in 

spoilage costs while waiting to offload. Reinforcement shortens the time to reopen a node from 

𝐻𝑗 to ℎ𝑗 . Table 2 summarizes the losses for each of the cases. Determining the parameters for this 

particular loss function is expected to require solving a max-flow problem in the underlying 

time-expanded network. 

  Turning this around, for a given node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇 , the reinforcement, 

IMTF, and attack actions of the last 𝐻𝑗 periods must be considered. It is important not to double 

count the losses due to a successful attack on a closed node. The definitions of the decision 

variables are given 

 No IMTF Open IMTF 

Unreinforced • 𝜆𝑗𝑡 in period of attack 

• 𝛿1𝑗𝑡𝜆𝑗𝑡 in next 𝐻𝑗 − 1  

𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡) for 𝐻𝑗 periods 

Reinforced • 𝜆𝑗𝑡 in period of attack 

• 𝛿1𝑗𝑡𝜆𝑗𝑡 in next ℎ𝑗 − 1 

𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡) for ℎ𝑗  periods 

Note that 𝐻𝑗 > ℎ𝑗. 

Definition 2.1. 

𝐿𝑗𝑡(𝑤, 𝑥,𝑦,𝜔) = max {𝜆𝑗𝑡𝜔𝑗𝑡(1 − 𝑋𝑗𝑡) (9)  

𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�   𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (10)  
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𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�   

 𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1} 
(11)  

Linearizing this gives: 

𝑙𝑗𝑡𝜔 ≥ 𝜔𝑗𝑡(1 − 𝑋𝑗𝑡) (12)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�    ∀   𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (13)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�    ∀𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1 (14)  

𝑙𝑗𝑡𝜔 ≥ 0 (15)  

2.5.2 Difference between relaxed worst-case and best-case losses 

 Defending against a large but unlikely loss may divert resources from smaller but more likely 

attacks. This is the motivation behind relaxing the uncertainty set. The defender would in general 

prefer to invest in reinforcements in a way that minimizes the range of losses; in effect, they are 

attempting to increase the convergence of their reinforcement efforts. When the worst-case loss 

is large but unlikely, investing heavily in reducing the worst-case loss may leave the defended 

vulnerable to smaller but likely losses. 

 While variance or absolute deviation may seem like natural measures of this objective, the 

use of dynamic scenario probabilities in the model makes them computationally challenging. The 

range of losses is instead proxied by the worst-case loss in the most likely 𝛽% and 1 − 𝛽% of 

the losses. Another CVaR constraint is introduced for 1 − 𝛽% case, and the worst-case loss over 

the small uncertainty set, called (1 − 𝛽) − 𝑈𝐶 is found the same way as over the current set, 

called 𝛽 − 𝑈𝐶. 

Definition 2.2. 

 𝐿2(𝑤, 𝑥,𝑦,𝜔) = max
𝜔| 𝑃𝜔∈𝛽−𝑈𝐶

𝐿(𝑤, 𝑥,𝑦,𝜔) − max
𝜔 |𝑃𝜔∈(1−𝛽)−𝑈𝐶 𝐿(𝑤, 𝑥,𝑦,𝜔) (16)  

2.5.3  Approximate Expected Loss 

  While calculating the expected loss directly leads to a nonlinear programming problem, 

using the percentiles of the distribution of log-probabilities leads to a way to proxy it. Create 𝑛 

CVaR constraints for the percentiles 𝛽𝑖,    𝑖 = 1. .𝑛. This model is formulated with 𝑛 =  10 and 

𝛽𝑖 = 0, 0.1, . . , 0.9. An auxiliary decision variable 𝑓𝜔𝑖  is introduced, with 𝑓𝜔𝑖 = 1 if 𝑝𝜔 is in the 𝑖th 
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percentile and 0 otherwise. The total number of scenarios in the 𝑖th percentile is ∑𝑓𝜔𝑖  , and 

estimate the probability of each one as 0.1
∑𝑓𝜔𝑖

. 

Definition 2.3. 

 𝐸�𝐿(𝑤, 𝑥,𝑦,𝜔)� = ∑ ∑ 0.1 𝑓𝜔𝑖  𝐿(𝑤,𝑥,𝑦,𝜔)
∑𝑓𝜔𝑖𝜔∈Ω

0.9
𝑖=0  (17)  

2.5.4  Other loss functions 

  Downtime It may be possible to extract the total system downtime and use it as a loss 

function. A preliminary attempt suggests that the size of the model may blow up. 

  Probability of Success It would be desirable to include an objective that maximized the 

probability that at least one attack succeeded, but I am not sure how to model it given the current 

structure. 

3   Multi-period Robust Network Fortification Problem with Adaptive Adversary 

  This is the fully expanded version of the high-level model above. Besides linearizing 

many of the constraints, this model uses a Conditional-Value-at-Risk (CVaR) constraint to 

capture membership in the uncertainty set. 

3.1  Parameters 

• 𝐺 = (𝑁,𝐴): A directed graph. Nodes represent locks or dams and arcs represent pools. 

• 𝑇: The set of time periods in the model, indexed by 𝑡 or 𝜏. 

• Ω: The set of all possible successful attacks, which corresponds to the feasible region of 

the outer optimization problem. If 𝑦0 is a feasible attack that has 𝑦𝑗𝑡 = 1 for some 𝑗 ∈ 𝑁 

and 𝑡 ∈ 𝑇, 𝑦1 which has the same components as 𝑦0 except that 𝑦𝑗𝑡 = 0 is also feasible. 

• Ω(y) : All possible successful attacks resulting from a feasible attack 𝑦 . |Ω(y)| =

2 ∑∑ yjt possible successful attacks. 

• 𝜔 ∈ Ω : An element of Ω  or Ω(y)  is called a scenario. 𝜔  is a  matrix with binary 

coefficients. 𝜔𝑗 is the row vector of successful attacks on node 𝑗 ∈ 𝑁. 𝜔𝑗𝑡 = 1 if node 𝑗 is 

successfully attacked in period 𝑡, and 0 otherwise. 

• 𝑎𝑗: The cost to attack node 𝑗 ∈ 𝑁. 

• 𝑏𝑗: The cost to open an IMTF at node 𝑗 ∈ 𝑁. 
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• 𝑐𝑗: The cost to fortify node 𝑗 ∈ 𝑁. 

• 𝐵0: The attacker's budget. 

• 𝐵1: The defender's budget. 

• 𝛽 ∈ (0, 1): What percentage of the least probable feasible scenarios to ignore. 

• 𝛿1𝑗𝑡: The percent increase in cost as a result of switching to land transportation at node 

𝑗 ∈ 𝑁 periods 𝑡 ∈ 𝑇 in the absence of an IMTF. 

• 𝜆𝑗𝑡 : The monetary cost of grain shipped through node 𝑗 ∈ 𝑁  in period 𝑡 ∈ 𝑇  in the 

absence of failures. Suppose 𝑥∗ is the solution to the deterministic capacitated min-cost 

network flow model over a time expanded network. Each time period is represented by a 

set of nodes 𝑁(𝑡) which form a layer in the network. The minimum time to transit each 

arc (𝑖𝑗) ∈ 𝐴 in the original network is given by 𝑡𝑚𝑖𝑛
𝑖𝑗 . Each outgoing arc (𝑗𝑖) from 𝑗 in the 

original network is transformed into a set of arcs (𝑖𝑗𝑡𝜏) ∈ {𝑡 + 𝑡𝑚𝑖𝑛
𝑖𝑗 … 𝑡𝑚𝑎𝑥} connecting 

node 𝑗 ∈ 𝑁(𝑡) to 𝑖 ∈ 𝑁(𝜏), representing the flow departing node 𝑖 during period 𝑡 and 

arriving at node 𝑗 in a later period 𝜏. The cost of arc (𝑖𝑗𝑡𝜏) is 𝐶𝑖𝑗 = 𝑐𝑖𝑗 + 𝑓(𝜏 − 𝑡), where 

𝑐𝑖𝑗 is the transportation cost for arc (𝑖𝑗) ∈ 𝐴 and 𝑓(𝜏 − 𝑡) gives the spoilage costs during 

a delay of 𝜏 − 𝑡. So 𝜆𝑗𝑡 = ∑ 𝐶𝑖𝑗 𝑥∗ 𝑖𝑗𝑡𝜏(𝑖𝑗𝑡𝜏) . 

• 𝑝𝑗: Before reinforcement, the probability that node  𝑗 ∈ 𝑁 fails when attacked. 

• 𝑟𝑗: After reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝜔𝑗𝑡: 1 if node  𝑗 ∈ 𝑁 is successfully attacked in scenario 𝜔 ∈ Ω, and 0 if it survives or is 

not attacked. 

• 𝐻𝑗: The number of periods that an unreinforced node 𝑗 ∈ 𝑁 is closed after a successful 

attack. 

• ℎ𝑗 < 𝐻𝑗: The number of periods that a reinforced node 𝑗 ∈ 𝑁 is closed after a successful 

attack. 

3.2  Decision Variables 

• 𝑤𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑤𝑗𝑡 = 1 if a fortification action is applied to node 𝑗 in period 

𝑡 ∈ 𝑇, and 0 otherwise. 
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• 𝑊𝑗𝑡 : For each node 𝑗 ∈ 𝑁 , 𝑊𝑗𝑡 = 1  if node 𝑗  is protected by fortification in period 

{1, . . , 𝑡}, and 0 otherwise. In other words, 𝑊𝑗𝑡 = ∑ 𝑤𝑗𝑡𝑡∈𝑇 . 

• 𝑥𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑥𝑗𝑡 = 1 if an IMTF is constructed during period 𝑡 ∈ 𝑇, and 0 

otherwise. 

• 𝑋𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑋𝑗𝑡 = 1 if an IMTF is open in period 𝑡 ∈ 𝑇, and 0 otherwise. In 

other words, 𝑋𝑗𝑡 = ∑ 𝑥𝑗𝑡𝑡∈𝑇 . 

• 𝑦𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑦𝑗𝑡 = 1 if node j is attacked in period 𝑡 ∈ 𝑇,and 0 otherwise. 

• 𝑧𝑗𝑡 : For each node 𝑗 ∈ 𝑁, 𝑧𝑗𝑡  linearizes the product 𝑤𝑗𝑡𝑦𝑗𝑡 . 𝑧𝑗𝑡 = 1 if node 𝑖 is fortified 

and attacked. 

• 𝐿 : The maximum loss over the most likely 1 − 𝛽%  of the feasible failure scenarios 

𝜔 ∈ Ω(𝑦). 

• 𝑙𝜔: The loss in each scenario 𝜔 ∈ Ω. For feasible scenarios 𝜔 ∈ Ω(𝑦), 𝑙𝜔 = 𝐿(𝑤, 𝑥,𝑦,

𝜔) as defined in Section C.3. For infeasible scenarios 𝜔 ∉ Ω(𝑦), 𝑙𝜔 = 0. 

• 𝑓𝜔: For each scenario 𝜔 ∈ Ω, 𝑓𝜔 = 0 if 𝜔 ∈ Ω(𝑦) and 1 if 𝜔 ∉ Ω(𝑦). 

• 𝑝𝜔 = ln�𝑃(𝜔)� for all 𝜔 ∈ Ω. 

• 𝜉: At optimality, 𝜉 = 𝑝𝜔𝛽, where ∑ 𝑃(𝜔)𝜔|𝑃(𝜔)<𝑃(𝜔𝛽) ≤ 𝛽. 

• 𝜁𝜔 : For infeasible scenarios 𝜔 ∉ Ω(𝑦) and for the least probable 𝛽%  of the feasible 

scenarios, 𝜁𝜔 = 0. Otherwise, 𝜁𝜔 = 𝑃(𝜔) − 𝜉. 

• 𝑧𝜔: Linearizes the product 𝜉𝑓𝜔 for each scenario 𝜔 ∈ Ω. 

3.3  Outer Problem: Attacker 

 Maximize 𝐻(𝑤, 𝑥, 𝑧) (18)  

 Subject to: 

 ∑ ∑ 𝑎𝑗  𝑦𝑗𝑡𝑡∈𝑇𝑗∈𝑁 ≤ 𝐵0 (19)  

 𝑦𝑗𝑡 ∈ {0, 1}    ∀𝑗 ∈ 𝑁 (20)  

3.4  Inner Problem: Defender 

 𝐻(𝑤, 𝑥, 𝑧) = Minimize 𝐿 (21)  

 Subject to: 
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 ∑ 𝑐𝑗𝑤𝑗𝑡 + 𝑏𝑗𝑥𝑗𝑡𝑗∈𝑁 ≤ 𝐵1 (22)  

 𝑓𝜔 ≥ 𝜔𝑗𝑡 − 𝑦𝑗𝑡    ∀𝜔 ∈ Ω, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (23)  

𝐿 ≥ 𝐿10.9 (24)  

𝐿 ≥ 𝐿10.9 − 𝐿10.1 (25)  

𝐿 ≥�� 𝐿3𝜔𝑖

𝜔∈Ω

0.9

𝑖=0

 (26)  

𝐿1,𝜔
𝑖 ≥ ��𝑙𝑗𝑡𝜔

𝑡∈𝑇𝑗∈𝑁

− 𝑀�𝐹𝜔𝑖 − 𝜁𝜔𝑖 + 1�   ∀𝜔 ∈ Ω, 𝑖 = 0, 0.1, . . , 0.9 (27)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝑡�1 − 𝑥𝑗𝜏�   ∀𝜏 ∈ {1, . . , 𝑡}  (28)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝑡 − 𝑋𝑗𝜏𝛿2𝑗𝑡�    ∀𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (29)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�    ∀𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1 (30)  

�� 𝐿3𝜔𝑖

𝜔∈Ω

0.9

𝑖=0

≥�� 0.1 𝐿1,𝜔
𝑖

𝜔∈Ω

0.9

𝑖=0

 (31)  

𝑊𝑗𝑡 ≥ 𝑤𝑗𝜏    ∀𝜏 ∈ {1, . . , 𝑡}, 𝑡 ∈ 𝑇 (32)  

𝑋𝑗𝑡 ≥ 𝑥𝑗𝜏     ∀𝜏 ∈ {1, . . , 𝑡}, 𝑡 ∈ 𝑇 (33)  

𝑧𝑗𝑡 ≥ 𝑤𝑗𝑡 + 𝑦𝑗𝑡 − 1 (34)  

� 𝑧𝜔𝑖
𝜔∈Ω

+
1

(1 − 𝛽𝑖)
� 𝜁𝜔𝑖
𝜔∈Ω

≤ 0    ∀𝑖 ∈ {0, 0.1, . . , 0.9} (35)  

𝜁𝜔𝑖 ≥ 𝑝𝜔 − 𝜉𝑖 − 𝑀𝑓𝜔    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (36)  

𝑝𝜔 ≥�𝑧𝑗𝑡�ln 𝑟𝑗 − ln 𝑝𝑗� + 𝑦𝑗 ln 𝑝𝑗
𝑗∈𝑁

    ∀𝜔 ∈ Ω (37)  

𝑧𝜔𝑖 ≥ −𝑀𝐹𝜔𝑖     ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (38)  

𝑧𝜔𝑖 ≥ 𝜉𝑖    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (39)  

𝑧𝜔𝑖 ≥ 𝜉𝑖 − 𝑀(1 − 𝐹𝜔𝑖 )    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (40)  

𝐹𝜔𝑖 ≥
𝑧𝜔𝑖

𝑘
    ∀ 𝑖 ∈ {0, 0.1, . . , 0.9} (41)  

𝐹𝜔𝑖 = 𝐹𝜔𝑖 − 𝐹𝜔𝑖+1    ∀ 𝑖 ∈ {0, 0.1, . . , 0.8} (42)  

𝐿3𝜔𝑖 ≤ −𝑀𝑓𝜔𝑖     ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (43)  

𝐿3𝜔𝑖 ≤ 𝐿3    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (44)  
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𝐿3𝜔𝑖 ≥ 𝐿3  −𝑀(1 − 𝑓𝜔𝑖 )    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (45)  

𝑤𝑗𝑡 ∈ {0, 1}   ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (46)  

𝑥𝑗𝑡 ∈ {0, 1}   ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (47)  

𝑤𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (48)  

𝑥𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (49)  

𝑧𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (50)  

𝐿 ≥ 0 (51)  

𝑙𝑗𝑡𝜔 ≥ 0    ∀𝜔 ∈ 𝛺, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (52)  

𝜁𝜔𝑖 ≥ 0    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (53)  

𝑓𝜔𝑖 ≥ 0    ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9} (54)  

𝑝𝜔 ∈ ℝ    ∀𝜔 ∈ Ω (55)  

𝜉𝑖 ∈ ℝ    ∀𝑖 ∈ {0, 0.1, . . , 0.9} (56)  

𝑧𝜔𝑖 ≤ 0   ∀𝜔 ∈ Ω, 𝑖 ∈ {0, 0.1, . . , 0.9}  (57)  

  In the outer problem, constraint (19) enforces the attacker's budget, and constraint (20) 

defines attacks as binary. 

  In the inner problem, constraint 23 enforces the defender's budget. The next constraint, 

(24), works with constraint (56) to indicate the feasibility of scenario 𝜔 ∈ Ω by setting 𝑓𝜔 to 1 if 

any node  𝑗 ∈ N fails without being attacked in period 𝑡 ∈ T. The next three constraints, (25), 

(26) and (27) form the toggle between the three loss functions. The following constraint (28) 

forces 𝐿𝜔𝑖  to be the maximum loss among the scenarios in the uncertainty set corresponding to 

percentile 𝑖. (𝑀 is some large number). Constraints (29) - (31) and (54) calculates the loss for 

each scenario 𝜔 ∈ Ω, regardless of feasibility. Constraint (32) is the fully-linearized version of 

the estimate of the expected loss and uses the auxiliary variables defined in constraints (110) –

(114). Constraints (33) and (34) indicate whether node 𝑗 is protected by fortification or an IMTF 

in period 𝑡. Constraint (35) enforces the definition of 𝑧𝑗𝑡. 

  This model uses the outer linearization in constraint (36) to discard the least probable 𝛽% 

of node failure scenarios. The “probability” of each scenario is 1
∑𝑓𝜔𝑖

, and the “loss” is ln𝑃(𝜔)  in 

the outer linearization of a CVaR constraint. The constraint is scaled by ∑𝑓𝜔𝑖 , which results in a 
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term 𝜉𝑖 .∑𝑓𝜔𝑖 . This term is linearized by constraints (39) – (41) and (59). At optimality, 𝜉𝑖 will be 

the natural log of the cutoff probability for the 𝑖th percentile. 

  Less probable scenarios will have 𝑝𝜔 = ln𝑃(𝜔) < 𝜉𝑖. As a result, constraint (37) will be 

0 for scenarios 𝜔 ∈ Ω(𝑦) with 𝑝𝜔 < 𝜉𝑖  or for scenarios 𝜔 ∉ Ω(𝑦). The remaining constraints 

define the bounds for the decision variables. 

4   Constructive Heuristic for Initial Solution 

  Since both the attacker and defender problems are resource allocation problems, it makes 

sense to try a greedy approach to the knapsack problems to create an initial solution. 

  Initialization 

1. For each 𝑗 ∈ N  and 𝑡 ∈ T , calculate the expected unreinforced loss, 𝑙𝑗𝑡 =

𝑝𝑗 ∑ 𝛿1𝑗𝜏𝜆𝑗𝜏
𝑡+𝐻𝑗
𝜏=𝑡 . 

2. Create an index set 𝑆 ≔ 𝑁 and empty |𝑁| × |𝑇| matrices 𝑤, 𝑥, and 𝑦. 

3. Set the objective value 𝑓, the attacker's cost 𝐴, the defender's fortification cost 𝐷 to 0. 

  Construct Initial Fortifications 

1. For each 𝑗 ∈ N and 𝑡 ∈ T, calculate the expected post-fortification losses for each of 

the three possibilities: 

• 𝑙𝑗𝑡𝑤 = 𝑟𝑗 ∑ 𝛿1𝑗𝜏𝜆𝑗𝜏
𝑡+ℎ𝑗
𝜏=𝑡   

• 𝑙𝑗𝑡𝑥 = 𝑝𝑗 ∑ 𝜆𝑗𝜏
𝑡+𝐻𝑗
𝜏=𝑡 𝛿2𝑗𝜏 

• 𝑙𝑗𝑡𝑤𝑥 = 𝑟𝑗 ∑ 𝜆𝑗𝜏𝛿2𝑗𝜏
𝑡+ℎ𝑗
𝜏=𝑡  

2. Find (𝑗∗, 𝑡∗,𝑤�𝑗𝑡∗ , 𝑥�𝑗𝑡∗ )  that maximizes 𝑙 =
max

𝑗 ∈ N, 𝑡 ∈ T (
𝑙𝑗𝑡−𝑙𝑗𝑡

𝑤

𝑐𝑗
,
𝑙𝑗𝑡−𝑙𝑗𝑡

𝑥

𝑏𝑗
,
𝑙𝑗𝑡−𝑙𝑗𝑡

𝑤𝑥

𝑐𝑗+𝑏𝑗
) . 𝑤�𝑗𝑡∗  and 

𝑥�𝑗𝑡∗  record the reinforcement action(s) that resulted in 𝑙. 

3.  If 𝐷 + 𝑐𝑗∗ + 𝑏𝑗∗ ≤ 𝐵1, set 

• 𝑁 ≔ 𝑁\{𝑗∗} 

• 𝐷 ≔ 𝐷 + 𝑐𝑗∗ + 𝑏𝑗∗ 

• 𝑤𝑗∗,𝑡∗ ≔ 𝑤�𝑗𝑡∗  

• 𝑥𝑗∗,𝑡∗ ≔ 𝑥�𝑗𝑡∗  

• 𝑙𝑗∗,𝑡∗ ≔ 𝑙𝑗∗,𝑡∗ − 𝑙 (Updating expected loss). 
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4. Repeat previous two steps until 𝐵1 − 𝐷 <
max
𝑗 ∈ N�𝑐𝑗, 𝑏𝑗�. 

  Construct Initial Attacks 

1. Create an index set 𝑆 ≔ 𝑁. 

2. Find (𝑗∗, 𝑡∗) =
arg max

𝑗 ∈ N, 𝑡 ∈ T
𝑙𝑗,𝑡

𝑎𝑗
. 

3. If 𝐴 + 𝑎𝑗∗ ≤ 𝐵0, set 

• 𝑁 ≔ 𝑁\{𝑗∗} 

• 𝐴 ≔ 𝐴 + 𝑎𝑗∗ 

• 𝑦𝑗∗,𝑡∗ ≔ 1 

• 𝑓 ≔

𝑓 + ∑ 𝜆𝑗𝜏�𝛿1𝑗𝜏 − 𝛿2𝑗𝜏�
𝑡+ℎ𝑗
𝜏=𝑡 + ∑ 𝜆𝑗𝜏𝛿2𝑗𝜏

𝑡+ℎ𝑗
𝜏=𝑡 + �1 − 𝑤𝑗𝑡�∑ 𝜆𝑗𝜏�𝛿1𝑗𝜏 −

𝑡+𝐻𝑗
𝜏=𝑡+ℎ𝑗+1

𝑥𝑗𝑡𝛿2𝑗𝜏�. 

4. Repeat Steps 2-3 until 𝐵0 − 𝐴 < min
𝑗 ∈ N𝑎𝑗 

5.0  RNIFP for Inland Waterways 

  This model is a bi-level attacker-defender model. The inner optimization problem is a 

Reliable Network Fortification Problem (RNFP) model, and the outer model is a capital 

budgeting model. The model is currently a single period model. The model does not currently 

take into account the probability of each scenario of node failures occurring, merely the losses 

overall the possible sets of node failures. 

  As currently formulated, the inner problem is a robust optimization model with an 

uncertainty set of all possible vectors of node failures for the attack decision y. The model does 

not consider the probability of each scenario, so the fortification decisions are not included in 

this iteration. A model that does use probability information to construct an uncertainty set is set 

out below. 

5.1  Parameters 

• 𝐺 = (𝑁,𝐴): A directed graph. Nodes represent locks or dams and arcs represent pools. 

• Ω: The set of possible node failures. Each element, called a scenario, is a binary vector of 

length 2|𝑁|. 
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• Ω(𝑦) ⊆ Ω: The set of possible node failures resulting from an attack decision 𝑦. 

• 𝑎𝑗 : The cost to attack node 𝑗 ∈ 𝑁. 

• 𝑏𝑗: The cost to open an IMTF at node 𝑗 ∈ 𝑁. 

• 𝐵0: The attacker's budget. 

• 𝐵1: The defender's budget. 

• 𝛿𝑗: The marginal cost of switching to land transportation at node 𝑗 ∈ 𝑁. 

• 𝑔: The cost or profit of one unit of grain. 

• 𝜆𝑗  : The flow of grain through node 𝑗 ∈ 𝑁 in the absence of failures; may be the solution 

to a min-cost network flow model. 

• 𝑠𝑗𝜔 = 1 if node 𝑗 ∈ 𝑁 fails in scenario 𝜔 ∈ Ω, and 0 if it survives. 

5.2  Decision Variables 

• 𝑥𝑗 : For each node 𝑗 ∈ 𝑁 , 𝑥𝑗 = 1  if an intermodal transfer facility (IMTF) has been 

opened, and 0 otherwise. 

• 𝑦𝑗: For each node 𝑗 ∈ 𝑁, 𝑦𝑗 = 1 if node 𝑗 is attacked, and 0 otherwise. 

• 𝐿 : The maximum loss over the most likely 1 − 𝛽%  of the feasible failure scenarios 

𝜔 ∈ Ω(𝑦). 

• 𝑙𝜔 : The loss in each scenario 𝜔 ∈ {0, 1}|𝑁| . For feasible scenarios 𝜔 ∈ Ω(𝑦), 𝑙𝜔 =

𝐿(𝑦,𝜔) as defined above. For infeasible scenarios 𝜔 ∉ Ω(𝑦), 𝑙𝜔 = 0. 

• 𝑓𝜔: For each scenario 𝜔 ∈ Ω,𝑓𝜔 = 0 if 𝜔 ∈ Ω(𝑦) and 1 if 𝜔 ∉ Ω(𝑦). 

5.3  Measuring Losses 

  In this model, the effect of a successful attack is modeled as causing a loss. The losses are 

defined in terms of cost. For each node 𝑗 ∈ 𝑁 the loss is defined to be: 

𝐿𝑗(𝑥,𝑦, 𝑠𝜔) = �
0             𝑠𝑗𝜔 = 0                                                                                     
𝜆𝑗𝑔          𝑠𝑗𝜔 = 1, 𝑥𝑗 = 0 Cost of destroyed grain at 𝑗                  
𝜆𝑗𝛿𝑗𝑔      𝑠𝑗𝜔 = 1, 𝑥𝑗 = 0 Increase in cost to switch modes at 𝑗

 (58)  

In terms of the formulation, the loss for each scenario is: 

𝐿(𝑥,𝑦, 𝑠𝜔) = �𝑠𝑗𝜔𝜆𝑗𝑔 �1 − 𝑥𝑗�1 − 𝛿𝑗��
𝑗∈𝑁

 (59)  
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  The loss (or damage) from attacks may be calculated in many ways. In this loss function, 

the purpose of the 𝜆𝑗𝑔 term is to weight the nodes by importance. Any one of a number of 

measures of criticality or centrality may be substituted. Similarly, there may be better ways to 

calculate the loss reduction from opening an IMTF. 

5.4  Outer Problem: Attacker 

 Maximize 𝐻(𝑥) (60)  

 Subject to: 

 ∑ 𝑎𝑗 𝑦𝑗𝑗∈𝑁 ≤ 𝐵0 (61)  

 𝑦𝑗 ∈ {0, 1}    ∀𝑗 ∈ 𝑁 (62)  

5.5  Inner Problem: Defender 

 𝐻(𝑥) = Minimize 𝐿 (63)  

 Subject to: 

 ∑ 𝑏𝑗𝑥𝑗𝑗∈𝑁 ≤ 𝐵1 (64)  

𝑓𝜔 ≥ 𝑠𝑗𝜔 − 𝑦𝑗     ∀𝜔 ∈ Ω, 𝑗 ∈ 𝑁 (65)  

𝐿 ≥ 𝑙𝜔 −𝑀𝑓𝜔    ∀𝜔 ∈ Ω (66)  

𝑙𝜔 ≥�𝑠𝑗𝜔𝜆𝑗𝑔 �1 − 𝑥𝑗�1 − 𝛿𝑗��
𝑗∈𝑁

    ∀𝜔 ∈ Ω (67)  

𝑥𝑗 ∈ {0, 1}  ∀ 𝑗 ∈ 𝑁 (68)  

𝐿 ≥ 0 (69)  

𝑙𝜔 ≥ 0    ∀𝜔 ∈ Ω (70)  

𝑓𝜔 ≥ 0    ∀𝜔 ∈ Ω (71)  

  In the outer problem, constraint (64) enforces the attacker's budget, and constraint (65) 

defines attacks as binary. In the inner problem, constraint (68) enforces the defender's budget. 

The next constraint, (69), works with constraint (75) to indicate the feasibility of scenario 𝜔 ∈ Ω 

by setting 𝑓𝜔 to 1 if any node  𝑗 ∈ 𝑁 fails without being attacked. The following constraint (70) 

forces 𝐿 to be the maximum loss among the feasible scenarios (𝑀 is some large number). 

Constraint (71) calculates the loss for each scenario 𝜔 ∈ Ω, regardless of feasibility. The 

remaining constraints define the bounds for the decision variables. 
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6   RNIFP with Uncertainty Sets 

  This model is a bi-level attacker-defender model. The inner optimization problem is a 

Reliable Network Fortification Problem (RNFP) model, and the outer model is a capital 

budgeting model. The model is currently a single period model. As currently formulated, the 

inner problem is a robust optimization model. This model uses probability information to relax 

the uncertainty set by discarding the least probable 𝛽% of scenarios. This model still does not 

calculate the expected value of the losses. 

6.1  Parameters 

• 𝑎𝑗 : The cost to attack node 𝑗 ∈ 𝑁. 

• 𝑏𝑗: The cost to open an IMTF at node 𝑗 ∈ 𝑁. 

• 𝑐𝑗: The cost to fortify node 𝑗 ∈ 𝑁. 

• 𝐵0: The attacker's budget. 

• 𝐵1: The defender's budget. 

• 𝛽 ∈ (0, 1): What percentage of the least probable feasible scenarios to ignore. 

• 𝛿𝑗: The marginal cost of switching to land transportation at node 𝑗 ∈ 𝑁. 

• 𝑔: The cost or profit of one unit of grain. 

• 𝜆𝑗  : The flow of grain through node 𝑗 ∈ 𝑁 in the absence of failures. 

• 𝑝𝑗: Before reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝑟𝑗: After reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝑠𝑗𝜔 = 0 if node 𝑗 ∈ 𝑁 fails in scenario 𝜔 ∈ Ω, and 1 if it survives. 

6.2  Decision Variables 

• 𝑤𝑗: For each node 𝑗 ∈ 𝑁, 𝑤𝑗 = 1 if node 𝑗 has been fortified, and 0 otherwise. 

• 𝑥𝑗: For each node 𝑗 ∈ 𝑁, 𝑥𝑗 = 1 if an IMTF has been opened, and 0 otherwise. 

• 𝑦𝑗: For each node 𝑗 ∈ 𝑁, 𝑦𝑗 = 1 if node 𝑗 is attacked, and 0 otherwise. 

• 𝑧𝑗: For each node 𝑗 ∈ 𝑁, 𝑧𝑗 linearizes the product 𝑤𝑗𝑦𝑗 . 𝑧𝑗 = 1 if  node 𝑖 is fortified and 

attacked. 

•  𝐿: The maximum loss over the most likely 1 − 𝛽% of the feasible failure scenarios 𝜔 ∈

𝛺(𝑦). 
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• 𝑙𝜔 : The loss in each scenario 𝜔 ∈ {0, 1}|𝑁| . For feasible scenarios 𝜔 ∈ Ω(𝑦), 𝑙𝜔 =

𝐿(𝑦,𝜔) as defined above. For infeasible scenarios 𝜔 ∉ Ω(𝑦), 𝑙𝜔 = 0. 

• 𝑓𝜔: For each scenario 𝜔 ∈ Ω,𝑓𝜔 = 0 if 𝜔 ∈ Ω(𝑦) and 1 if 𝜔 ∉ Ω(𝑦). 

• 𝑝𝜔 = ln�𝑃(𝜔)� for all 𝜔 ∈ Ω. 

• 𝜁𝜔 : For infeasible scenarios 𝜔 ∉ Ω(𝑦) and for the least probable 𝛽%  of the feasible 

scenarios, 𝜁𝜔 = 0. Otherwise, 𝜁𝜔 = 𝑝𝜔 − 𝜉. 

6.3  Outer Problem: Attacker 

 Maximize 𝐻(𝑤, 𝑥, 𝑧) (72)  

 Subject to: 

 ∑ 𝑎𝑗 𝑦𝑗𝑗∈𝑁 ≤ 𝐵0 (73)  

 𝑦𝑗 ∈ {0, 1}    ∀𝑗 ∈ 𝑁 (74)  

6.4  Inner Problem: Defender 

 𝐻(𝑤, 𝑥, 𝑧) = Minimize 𝐿 (75)  

 Subject to: 

 ∑ 𝑐𝑗𝑤𝑗 + 𝑏𝑗𝑥𝑗𝑗∈𝑁 ≤ 𝐵1 (76)  

𝑓𝜔 ≥ 𝑠𝑗𝜔 − 𝑦𝑗     ∀𝜔 ∈ Ω, 𝑗 ∈ 𝑁 (77)  

𝐿 ≥ 𝑙𝜔 −𝑀(𝑓𝜔 − 𝜁𝜔 + 1)    ∀𝜔 ∈ Ω (78)  

𝑙𝜔 ≥�𝑠𝑗𝜔𝜆𝑗𝑔 �1 − 𝑥𝑗�1 − 𝛿𝑗��
𝑗∈𝑁

    ∀𝜔 ∈ Ω (79)  

𝑧𝑗 ≥ 𝑤𝑗 + 𝑦𝑗 − 1    ∀𝑗 ∈ 𝑁 (80)  

𝜉 +
1

(1 − 𝛽)∑ 1 − 𝑓𝜔𝜔∈Ω
� 𝜁𝜔
𝜔∈Ω

≤ 0 (81)  

𝜁𝜔 ≥ 𝑝𝜔 − 𝜉 −𝑀𝑓𝜔    ∀𝜔 ∈ Ω  (82)  

𝑝𝜔 ≥�𝑧𝑗�ln 𝑟𝑗 − ln𝑝𝑗� + 𝑦𝑗 ln𝑝𝑗  
𝑗∈𝑁

    ∀𝜔 ∈ Ω (83)  

𝑤𝑗 ∈ {0, 1}   ∀𝑗 ∈ 𝑁 (84)  

𝑥𝑗 ∈ {0, 1}   ∀𝑗 ∈ 𝑁 (85)  

𝑧𝑗 ≥ 0   ∀𝑗 ∈ 𝑁 (86)  
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𝐿 ≥ 0 (87)  

𝑙𝜔 ≥ 0    ∀𝜔 ∈ Ω (88)  

𝜁𝜔 ≥ 0    ∀𝜔 ∈ Ω (89)  

𝑓𝜔 ≥ 0    ∀𝜔 ∈ Ω (90)  

𝑝𝜔 ∈ ℝ    ∀𝜔 ∈ Ω (91)  

𝜉 ∈ ℝ (92)  

  In the outer problem, constraint (78) enforces the attacker's budget, and constraint (79) 

defines attacks as binary. 

  In the inner problem, constraint (82) enforces the defender's budget. The next 

constraint, (83), works with constraint (96) to indicate the feasibility of scenario 𝜔 ∈ Ω by 

setting 𝑓𝜔 to 1 if any node 𝑗 ∈ 𝑁 fails without being attacked. The following constraint (84) 

forces 𝐿 to be the maximum loss among the scenarios in the uncertainty set (𝑀 is some large 

number). Constraint (85) calculates the loss for each scenario 𝜔 ∈ Ω, regardless of feasibility. 

Constraint 86 enforces the definition of 𝑧𝑗. 

  This model uses the outer linearization in constraint (87) to discard the least probable 

𝛽% of node failure scenarios. The “probability” of each scenario is 1
∑1−𝑓𝜔

, and the “loss” is 

ln𝑃(𝜔) in the outer linearization of a conditional value-at-risk (CVaR) constraint. At optimality, 

𝜉 will be the natural log of the cutoff probability. Less probable scenarios will have 𝑝𝜔 =

ln𝑃(𝜔) < 𝜉. As a result, constraint (88) will be 0 for scenarios 𝜔 ∈ Ω(𝑦) with 𝑝𝜔 < 𝜉 or for 

scenarios 𝜔 ∉ Ω(𝑦). The remaining constraints define the bounds for the decision variables. 

7   Multi-period RNIFP with Uncertainty Sets 

  This model is a bi-level attacker-defender model. The inner optimization problem is a 

Multi-period Reliable Network Fortification Problem (RNFP) model, and the outer model is a 

capital budgeting model. As currently formulated, the inner problem is a robust optimization 

model. This model uses probability information to relax the uncertainty set by discarding the 

least probable 𝛽% of scenarios. This model still does not calculate the expected value of the 

losses. 

7.1 Parameters 
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• 𝐺 = (𝑁, 𝐴): A directed graph. Nodes represent locks or dams and arcs represent pools. 

• 𝑇: The set of time periods in the model, indexed by 𝑡 or 𝜏. 

• Ω: The set of all possible successful attacks, which corresponds to the feasible region of 

the outer optimization problem. If 𝑦0 is a feasible attacks that has 𝑦𝑗𝑡 = 1 for some 𝑗 ∈ 𝑁 

and 𝑡 ∈ 𝑇, 𝑦1 which has the same components as 𝑦0 except that 𝑦𝑗𝑡 = 0 is also feasible. 

• Ω(𝑦): All possible successful attacks resulting from a feasible attack 𝑦. |Ω(𝑦)| = 2∑∑𝑦𝑗𝑡  

possible successful attacks. 

• ω ∈ Ω(𝑦): An element of Ω or Ω(𝑦) is called a scenario. ω is a |𝑁| × |𝑇| matrix with 

binary coefficients. ω𝑗 is the row vector of successful attacks on node 𝑗 ∈ 𝑁. ω𝑗𝑡 = 1 if 

node 𝑗 is successfully attacked in period 𝑡, and 0 otherwise. 

• 𝑎𝑗 : The cost to attack node 𝑗 ∈ 𝑁. 

• 𝑏𝑗: The cost to open an IMTF at node 𝑗 ∈ 𝑁. 

• 𝑐𝑗: The cost to fortify node 𝑗 ∈ 𝑁. 

• 𝐵0: The attacker's budget. 

• 𝐵1: The defender's budget. 

• 𝛽 ∈ (0, 1): What percentage of the least probable feasible scenarios to ignore. 

• 𝛿1𝑗𝑡: The percent increase in cost as a result of switching to land transportation at node 

𝑗 ∈ 𝑁 periods 𝑡 ∈ 𝑇 in the absence of an IMTF. 

• 𝛿2𝑗𝑡: The percent cost reduction when switching to land transportation if an IMTF is open 

at node 𝑗 ∈ 𝑁. 𝛿2𝑗𝑡 > 𝛿1𝑗𝑡. For clarification, see the loss function in Subsection 2.5.1. 

• 𝜆𝑗𝑡 : The monetary cost of grain shipped through node 𝑗 ∈ 𝑁  in period 𝑡 ∈ 𝑇  in the 

absence of failures. Suppose 𝑥∗ is the solution to the deterministic capacitated min-cost 

network flow model over a time expanded network. Each time period is represented by a 

set of nodes 𝑁(𝑡) which form a layer in the network. The minimum time to transit each 

arc (𝑖𝑗) ∈ 𝐴 in the original network is given by 𝑡𝑚𝑖𝑛
𝑖𝑗 . Each outgoing arc (𝑗𝑖) from 𝑗 in the 

original network is tranformed into a set of arcs (𝑖𝑗𝑡𝜏) ∈ {𝑡 + 𝑡𝑚𝑖𝑛
𝑖𝑗 … 𝑡𝑚𝑎𝑥} connecting 

node 𝑗 ∈ 𝑁(𝑡) to 𝑖 ∈ 𝑁(𝜏), representing the flow departing node 𝑖 during period 𝑡 and 

arriving at node 𝑗 in a later period 𝜏. The cost of arc (𝑖𝑗𝑡𝜏) is 𝐶𝑖𝑗 = 𝑐𝑖𝑗 + 𝑓(𝜏 − 𝑡), where 



 

 

76 Mitigating Dynamic Risk in Multi-Modal Perishable Commodity Supply Chain Networks  

4/30/2014 

𝑐𝑖𝑗 is the transportation cost for arc (𝑖𝑗) ∈ 𝐴 and 𝑓(𝜏 − 𝑡) gives the spoilage costs during 

a delay of 𝜏 − 𝑡. So 𝜆𝑗𝑡 = ∑ 𝐶𝑖𝑗 𝑥∗ 𝑖𝑗𝑡𝜏(𝑖𝑗𝑡𝜏) . 

• 𝑝𝑗: Before reinforcement, the probability that node  𝑗 ∈ 𝑁 fails when attacked. 

• 𝑟𝑗: After reinforcement, the probability that node 𝑗 ∈ 𝑁 fails when attacked. 

• 𝜔𝑗𝑡: 1 if node  𝑗 ∈ 𝑁 is successfully attacked in scenario 𝜔 ∈ Ω, and 0 if it survives or is 

not attacked. 

• 𝐻𝑗: The number of periods that an unreinforced node 𝑗 ∈ 𝑁 is closed after a successful 

attack. 

• ℎ𝑗 < 𝐻𝑗: The number of periods that a reinforced node 𝑗 ∈ 𝑁 is closed after a successful 

attack. 

7.2  Decision Variables 

• 𝑤𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑤𝑗𝑡 = 1 if a fortification action is applied to node 𝑗 in period 

𝑡 ∈ 𝑇, and 0 otherwise. 

• 𝑊𝑗𝑡 : For each node 𝑗 ∈ 𝑁 , 𝑊𝑗𝑡 = 1  if node 𝑗  is protected by fortification in period 

{1, . . , 𝑡}, and 0 otherwise. In other words, 𝑊𝑗𝑡 = ∑ 𝑤𝑗𝑡𝑡∈𝑇 . 

• 𝑥𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑥𝑗𝑡 = 1 if an IMTF is constructed during period 𝑡 ∈ 𝑇, and 0 

otherwise. 

• 𝑋𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑋𝑗𝑡 = 1 if an IMTF is open in period 𝑡 ∈ 𝑇, and 0 otherwise. In 

other words, 𝑋𝑗𝑡 = ∑ 𝑥𝑗𝑡𝑡∈𝑇 . 

• 𝑦𝑗𝑡: For each node 𝑗 ∈ 𝑁, 𝑦𝑗𝑡 = 1 if node j is attacked in period 𝑡 ∈ 𝑇,and 0 otherwise. 

• 𝑧𝑗𝑡 : For each node 𝑗 ∈ 𝑁, 𝑧𝑗𝑡  linearizes the product 𝑤𝑗𝑡𝑦𝑗𝑡 . 𝑧𝑗𝑡 = 1 if node 𝑖 is fortified 

and attacked. 

• 𝐿 : The maximum loss over the most likely 1 − 𝛽%  of the feasible failure scenarios 

𝜔 ∈ Ω(𝑦). 

• 𝑙𝜔: The loss in each scenario 𝜔 ∈ Ω. For feasible scenarios 𝜔 ∈ Ω(𝑦), 𝑙𝜔 = 𝐿(𝑤, 𝑥,𝑦,

𝜔) as defined in Section C.3. For infeasible scenarios 𝜔 ∉ Ω(𝑦), 𝑙𝜔 = 0. 

• 𝑓𝜔: For each scenario 𝜔 ∈ Ω, 𝑓𝜔 = 0 if 𝜔 ∈ Ω(𝑦) and 1 if 𝜔 ∉ Ω(𝑦). 

• 𝑝𝜔 = ln�𝑃(𝜔)� for all 𝜔 ∈ Ω. 
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• 𝜉: At optimality, 𝜉 = 𝑝𝜔𝛽, where ∑ 𝑃(𝜔)𝜔|𝑃(𝜔)<𝑃(𝜔𝛽) ≤ 𝛽. 

• 𝜁𝜔 : For infeasible scenarios 𝜔 ∉ Ω(𝑦) and for the least probable 𝛽%  of the feasible 

scenarios, 𝜁𝜔 = 0. Otherwise, 𝜁𝜔 = 𝑃(𝜔) − 𝜉. 

• 𝑧𝜔: Linearizes the product 𝜉𝑓𝜔 for each scenario 𝜔 ∈ Ω. 

7.3  Loss Function 

  In this model a successful attack closes a node for several periods. The value of flow 

through a node during the period 𝑡  is denoted by 𝜆𝑗𝑡  and includes spoilage cost as well as 

transportation. During a successful attack on an unreinforced node without an IMTF, all flow is 

assumed to be destroyed - i.e. the loss is 𝜆𝑗𝑡. In subsequent periods the flow must be offloaded at 

expensive private riverside docks, resulting in a 𝛿1𝑗𝑡% increase in total cost. A second successful 

attack on a closed node extends the closure period. 

  Constructing an IMTF reduces the cost to offload product onto rail and trucks by 

𝛿2𝑗𝑡%; that is, the marginal cost increase is 𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡). The cost increases are indexed 

by time because transportation rates vary by season and because during the high season 

capacity restrictions may result in spoilage costs while waiting to offload. Reinforcement 

shortens the time to reopen a node from 𝐻𝑗  to ℎ𝑗  . Table 2 summarizes the losses for each 

cases. 

 No IMTF Open IMTF 

Unreinforced • 𝜆𝑗𝑡 in period of attack 

• 𝛿1𝑗𝑡𝜆𝑗𝑡 in next 𝐻𝑗 − 1  

𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡) for 𝐻𝑗 periods 

Reinforced • 𝜆𝑗𝑡 in period of attack 

• 𝛿1𝑗𝑡𝜆𝑗𝑡 in next ℎ𝑗 − 1 

𝜆𝑗𝑡(𝛿1𝑗𝑡 − 𝛿2𝑗𝑡) for ℎ𝑗  periods 

Note that 𝐻𝑗 > ℎ𝑗. 

Turning this around, for a given node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇, the reinforcement, IMTF, and 

attack actions of the last 𝐻𝑗 periods must be considered. It is important not to double count the 

losses due to a successful attack on a closed node. 

Definition 7.1. 

𝐿𝑗𝑡(𝑤, 𝑥,𝑦,𝜔) = max {𝜆𝑗𝑡𝜔𝑗𝑡(1 − 𝑋𝑗𝑡) (93)  
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𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�   𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (94)  

𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�   

 𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1} 
(95)  

Linearizing this gives: 

𝑙𝑗𝑡𝜔 ≥ 𝜔𝑗𝑡(1 − 𝑋𝑗𝑡) (96)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�    ∀𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (97)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝑡 − 𝑋𝑗𝑡𝛿2𝑗𝑡�    ∀𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1 (98)  

𝑙𝑗𝑡𝜔 ≥ 0 (99)  

7.4 Outer Problem: Attacker 

 Maximize 𝐻(𝑤, 𝑥, 𝑧) (100)  

 Subject to: 

 ∑ ∑ 𝑎𝑗  𝑦𝑗𝑡𝑡∈𝑇𝑗∈𝑁 ≤ 𝐵0 (101)  

 𝑦𝑗𝑡 ∈ {0, 1}    ∀𝑗 ∈ 𝑁 (102)  

7.5 Inner Problem: Defender 

 𝐻(𝑤, 𝑥, 𝑧) = Minimize 𝐿 (103)  

 Subject to: 

 ∑ 𝑐𝑗𝑤𝑗𝑡 + 𝑏𝑗𝑥𝑗𝑡𝑗∈𝑁 ≤ 𝐵1 (104)  

 𝑓𝜔 ≥ 𝜔𝑗𝑡 − 𝑦𝑗𝑡    ∀𝜔 ∈ Ω, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (105)  

𝐿 ≥��𝑙𝑗𝑡𝜔

𝑡∈𝑇𝑗∈𝑁

− 𝑀(𝑓𝜔 − 𝜁𝜔 + 1)   ∀𝜔 ∈ Ω (106)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝑡�1 − 𝑥𝑗𝑡�   ∀𝜏 ∈ {1, . . , 𝑡}  (107)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�𝛿1𝑗𝜏 − 𝑋𝑗𝑡𝛿2𝑗𝜏�    ∀𝑡 − ℎ𝑗 ≤ 𝜏 ≤ 𝑡 − 1 (108)  

𝑙𝑗𝑡𝜔 ≥ 𝜆𝑗𝑡𝜔𝑗𝜏�1 −𝑊𝑗𝜏��𝛿1𝑗𝜏 − 𝑋𝑗𝑡𝛿2𝑗𝜏�    ∀𝑡 − 𝐻𝑗 ≤ 𝜏 ≤ 𝑡 − ℎ𝑗 − 1 (109)  

𝑊𝑗𝑡 ≥ 𝑤𝑗𝜏    ∀𝜏 ∈ {1, . . , 𝑡}, 𝑡 ∈ 𝑇 (110)  

𝑋𝑗𝑡 ≥ 𝑥𝑗𝜏     ∀𝜏 ∈ {1, . . , 𝑡}, 𝑡 ∈ 𝑇 (111)  

𝑧𝑗𝑡 ≥ 𝑤𝑗𝑡 + 𝑦𝑗𝑡 − 1 (112)  
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� 𝑧𝜔
𝜔∈Ω

+
1

(1 − 𝛽)
� 𝜁𝜔
𝜔∈Ω

≤ 0 (113)  

𝜁𝜔 ≥ 𝑝𝜔 − 𝜉 −𝑀𝑓𝜔    ∀𝜔 ∈ Ω (114)  

𝑝𝜔 ≥�𝑧𝑗𝑡�ln 𝑟𝑗 − ln 𝑝𝑗� + 𝑦𝑗 ln 𝑝𝑗
𝑗∈𝑁

    ∀𝜔 ∈ Ω (115)  

𝑧𝜔 ≥ −𝑀(1 − 𝑓𝜔)    ∀𝜔 ∈ Ω (116)  

𝑧𝜔 ≥ 𝜉    ∀𝜔 ∈ Ω (117)  

𝑧𝜔 ≥ 𝜉 −𝑀(𝑓𝜔)    ∀𝜔 ∈ Ω (118)  

𝑤𝑗𝑡 ∈ {0, 1}   ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (119)  

𝑥𝑗𝑡 ∈ {0, 1}   ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (120)  

𝑤𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (121)  

𝑥𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (122)  

𝑧𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (123)  

𝐿 ≥ 0 (124)  

𝑙𝑗𝑡𝜔 ≥ 0    ∀𝜔 ∈ 𝛺, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (125)  

𝜁𝜔 ≥ 0    ∀𝜔 ∈ Ω (126)  

𝑓𝜔 ≥ 0    ∀𝜔 ∈ Ω (127)  

𝑝𝜔 ∈ ℝ    ∀𝜔 ∈ Ω (128)  

𝜉 ∈ ℝ (129)  

𝑧𝜔 ≤ 0   ∀𝜔 ∈ Ω (130)  

  In the outer problem, constraint (108) enforces the attacker's budget, and constraint (109) 

defines attacks as binary. 

  In the inner problem, constraint (112) enforces the defender's budget. The next constraint, 

(113), works with constraint 135 to indicate the feasibility of scenario 𝜔 ∈ Ω by setting 𝑓𝜔 to 1 if 

any node  𝑗 ∈ N fails without being attacked in period 𝑡 ∈ T. The following constraint (114) 

forces 𝐿 to be the maximum loss among the scenarios in the uncertainty set (𝑀 is some large 

number). Constraints (115) - (117) and (133) calculates the loss for each scenario𝜔 ∈ Ω , 

regardless of feasibility. Constraints (118) and (119) indicate whether node 𝑗 is protected by 

fortification or an IMTF in period𝑡. Constraint (120) enforces the definition of 𝑧𝑗𝑡. 
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  This model uses the outer linearization in constraint (121) to discard the least probable 

𝛽% of node failure scenarios. The “probability” of each scenario is 1
∑(1−𝑓𝜔)

, and the “loss” is 

ln𝑃(𝜔)  in the outer linearization of a conditional value-at-risk CVaR constraint. The constraint 

is scaled by ∑(1 − 𝑓𝜔), which results in a term 𝜉.∑𝑓𝜔. This term is linearized by constraints 

(124) – (126) and (138). At optimality, 𝜉 will be the natural log of the cutoff probability. Less 

probable scenarios will have 𝑝𝜔 = ln𝑃(𝜔) < 𝜉 . As a result, constraint (122) will be 0 for 

scenarios 𝜔 ∈ Ω(𝑦) with 𝑝𝜔 < 𝜉 or for scenarios𝜔 ∉ Ω(𝑦). The remaining constraints define the 

bounds for the decision variables. 
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Appendix B. 

Student Poster Presentations 
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Appendix C. 

ISERC Presentation 
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