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Abstract

Population growth in rural areas has led to new interest in rail transportation. Plan-

ning a passenger rail system involves numerous difficult decisions, most representing

a trade-off between customer service and cost. In this work, we attempt to integrate

many of these planning decisions. We consider strategic decisions such as station loca-

tion and vehicle procurement, as well as tactical issues that include vehicle scheduling.

Our integrated model exploits the linear network structure that best suits many rural

American communities, including Northwest Arkansas. Due to the intractability of the

integrated rail planning problem, we have developed a customized heuristic approach

to solve real world instances. In our case study, we have applied our model and so-

lution methodology to study the possibility of implementing a passenger rail system

in Northwest Arkansas. Our work represents the first steps in a passenger rail feasi-

bility study for Northwest Arkansas, while providing new mathematical modeling and

solution methodology contributions to the area of transportation research.
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1 Introduction

Rising fuel prices (see Figure 1) and growing populations in rural areas have led to

interest in rail transportation as an environmentally conscious alternative to high-

way expansion for the alleviation of traffic congestion. Northwest Arkansas (NWA)

is a prime example of this phenomenon. In fact, NWA was the sixth-fastest grow-

ing metropolitan area from 1990-2000 with a growth rate of 47.5% [26]. Though the

growth rate has decreased slightly since 2000, the NWA population could surpass 1

million within 25 years if current growth rates continue 1. Further evidence suggesting

NWA as a natural candidate for passenger rail is the advantageous distribution of the

area’s population. Furthermore, a study by the University of Arkansas Community

Design Center [7] points out that two-thirds of all current NWA residents live within

one mile of existing rail right-of-way.

Passenger rail systems of differing sizes and capabilities are available to city plan-

ners. Common amongst alternatives are Light Rail, Heavy Rail and Commuter rail

systems. According to the American Public Transportation Association (APTA), Light

Rail systems (also known as streetcar, tramway, or trolley systems) typically feature

electrically driven vehicles with power drawn from an overhead electric line. The APTA

defines Heavy Rail systems (also known as metros or subways) to be those operating

on an electric railway with the capacity for heavy volume of traffic. Finally, the APTA

states that Commuter Rail systems are usually located along routes of current or for-

mer freight railroad, that their trains may be electric or diesel driven, and that they

typically connect a metropolitan area to its suburbs [15]. The methods we describe

in this work could be applied to any of these system types. However, given the exist-

ing rail right-of-way through the heart of the area, the Commuter Rail model is most

applicable to Northwest Arkansas.

In addition to rail systems differing by type and purpose, the configuration of any

system plays a key role in determining its operational capabilities and challenges. Fig-

ure 2 depicts two such passenger rail configurations. Radial networks are common in

urban settings, where populations are spread over vast areas, and throughout Europe

and Asia, where rail systems connect cities in all directions. Because of the complexity

1Recent growth rates based on data from the U.S. Census Bureau 2012 Statistical Abstract [5].
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Figure 1: Historical Gasoline Prices in the U.S.
Source: U.S. Energy Information Administration

of most urban/regional radial rail networks, researchers have historically approached

the rail planning problem hierarchically for the sake of tractability [10]. Any passenger

rail system requires an extensive planning process that includes strategic, tactical, and

operational decisions. Operational decisions typically concern day-to-day activities and

schedule disruptions, tactical decisions are those with a 1-5 year impact (i.e. resource

allocation), and strategic decisions are those with implications reaching beyond 5 years

(i.e. resource procurement) [10]. Within each of these planning stages, numerous prob-

lems must be considered, as shown in Table 1. Authorities in the field have commented

that the hierarchical planning approach fails to guarantee an optimal system, due to

its inability to capture all interactions between various planning stages [9].

Some rural communities, especially those that have developed along a river, road-

way, or historical rail line, lend themselves to the development of a passenger rail

system that follows a single path, however. We will refer to these as linear networks

(see Figure 2). Simpler networks with fewer required decisions may allow for the use of

an alternative integrated planning process that simultaneously considers the set of all

required decisions, yielding system-optimal solutions. Rural areas that naturally per-

mit a linear network are prime candidates for this type of approach. In this work, we

introduce a mixed integer programming model that integrates many of the strategic and

tactical decisions outlined in Table 1. Since this integrated problem is difficult to solve

5



Figure 2: Radial versus Linear network

Table 1: Rail Planning Decisions

Strategic

Number of Stations

Station Locations

Track Location

Number of Vehicles

Tactical

Days & Times of Operation

Vehicle Routes

Projected Demand

Vehicle Schedules

Operational

Crew Composition

Crew Assignment

Train Dispatching

Delay Management
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using currently available computer hardware and software, we have developed a cus-

tomized heuristic process to generate quality solutions for realistically-sized instances.

Finally, we have applied our model and solution methods to study the possibility of

implementing a passenger rail system in Northwest Arkansas.

2 Literature review

Rail planning has been studied extensively within the operations research community.

However, the existing literature is limited in its applicability to rural settings. The

method adopted by most researchers consists of separating rail planning decisions into

subproblems and solving each individually [10]. The following well-studied subproblems

result: network planning [23], line planning [9, 16], station location [24, 27], timetabling

[11, 20, 21], vehicle scheduling [28], and vehicle routing [30]. Though many of these

problems are studied from a deterministic standpoint, some researchers have developed

models that incorporate the uncertainty involved in rail systems. For example, Kroon et

al. develop train timetables that minimize the average delay associated with stochastic

disturbances in [21] and [20]. In [22], List et al. consider uncertainty of future demand

and operating conditions in their model meant to optimize fleet sizes. Researchers

have attempted to solve these problems exactly in rare cases. In [13, 14] a modified

branch-and-bound technique is employed to solve certain rail and bus scheduling prob-

lems. The authors exploit the structure of the problems LP in a way that would not

extend to our integrated problem, however. Much of the literature focuses on heuristic

development since these problems are often applied to very large systems. Various

heuristic approaches have been applied to these problems including Lagrangian Relax-

ation [8, 25], Tabu Search [17, 18, 25], Neighborhood Searches [18, 25], and Genetic

Algorithms [17, 18]. In these works, heuristics have been shown to be successful in

generating quality solutions for many rail planning problems. No single heuristic has

been applied to all of the problems that we have integrated, however. For an extended

review of passenger rail research see [10, 12]. More recent research shows a continued

interest in this area, but no serious work has been done to integrate these various

subproblems. Instead, researchers have continued to assume that the rail planning

process will follow a hierarchical structure. This hierarchical approach to rail planning

7



is unavoidable when the network to be constructed is more complex, as is the case with

most Asian and European networks. However, due to subproblem interactions, it is in

the planners’ best interest to integrate decisions when possible [9]. Our investigation

found that integration of this type is not present in the existing literature. However, we

contend that the configuration and reduced size of many rural communities, including

the NWA region, open the door to a partial integration of the rail planning process.

In this work, we have taken the first steps toward an improved planning tool for rural

rail transportation over the methods currently found in the literature. We have inte-

grated many of the problems outlined above by exploiting the linear network structure

that is best-suited for many rural settings. Since this integrated problem is difficult

to solve to optimality, we have developed a heuristic motivated by the neighborhood

search concept. Neighborhood search heuristics and their variants are ubiquitous in

the Operations Research literature. For a review of local search techniques, see [29].

3 Problem description

Our model is meant to assist planners as they make important strategic and tactical

decisions about potential passenger rail systems. We assume that a rail right-of-way

has been determined, and that a finite number of potential station locations have

been identified along this right-of-way. This right-of-way features one track for each

direction of travel, and forms a linear network as defined in Section 1. Two of the

potential stations form the static end-points for the potential system. One endpoint

serves as the depot for the trains, where all trains begin and end each of their loops (see

definition below). The opposite endpoint serves as the location where trains reverse

their direction of travel.

Loop When a train departs the first station, traverses the entire track in one direction,

travels the entire track in the opposite direction, and then returns to its original

location, we will say that it has completed one loop.

Furthermore, we assume that origin, destination, and scheduling information is known

or can be estimated for all potential customers. In this initial work, we have assumed

deterministic customer demand. However, possibilities for stochastic variants of our

8



Figure 3: An Example Where |L| = 10

problem are discussed in Section 7. Using this information, along with station and ve-

hicle cost information, we have developed a model to identify the station configuration,

vehicle fleet size, and set of train schedules that will maximize the daily profit for the

system. We focus on a single-day horizon, with time measured in minutes. To nor-

malize costs, daily values for item procurement costs are estimated (in current dollars)

using the item’s purchase cost and estimated life of the item. For example, if it costs

$2,000,000 to procure a train that should remain in service for 20 years for 250 working

days each year, the estimated daily cost for each train is $400. Costs associated with

installing any necessary track are not considered, because the right-of-way is assumed

to exist in our scenario.

To model our problem, we consider a passenger rail network consisting of two

parallel tracks, one for each direction of travel, connecting two fixed stations (endpoints

of the linear network) where trains turn around and depart in the opposite direction.

The set L contains two elements for each possible station location along the track,

corresponding to the two directions of travel. Letting L = |L|, station 1 and L both

correspond to the first possible location, 2 and L − 1 to the second possible location,

and so on until the last possible station location, represented by L
2 and L

2 + 1. The

cost of procuring a station at location ` ∈ L is f`, where f` > 0 for l = 1 . . . L2 and 0

otherwise. Figure 3 provides an illustrative example. In this example, five potential

stations have been identified, including the two fixed endpoints. Therefore, L = 10 and

the first station location is represented by 1 and 10 depending on direction of travel,

the second by 2 and 9, and so on.

The set of trains that may potentially serve customers is denoted by T , where

|T | = T . Associated with each train τ ∈ T is a procurement cost cτ , a per-loop

9



operating cost vτ , and a capacity uτ . The time required for a train to travel from

location ` − 1 to ` is denoted t`. The speed of a train as it travels between locations

is assumed to be constant, thus t` is proportional to the length of the track between

` − 1 and `. In addition, we must account for the time required for a train to stop

at location `, denoted δ`, in the event that a station exists there. The set K, where

|K| = K, consists of the loops that a train may take around the linear rail network.

Here, K is a calculated upper bound on the possible number of loops that any train

may need to take during the time horizon.

The set G is comprised of the set of potential passenger groups in the rail system.

The number of passengers in group g ∈ G is denoted by Pg. The origin and destination

for group g are denoted og and dg, respectively. Each passenger group g has an arrival

window [ag − bg, ag] associated with their destination, where ag specifies the latest

acceptable arrival time at destination dg, and bg specifies the maximum acceptable

waiting time (where waiting occurs when a passenger arrives at their destination early).

Thus, any train arriving at dg within the arrival window of group g is eligible to serve

all or some of the passengers in group g. We restrict passenger groups from being split

between multiple trains. Finally, the system earns a daily revenue of rg for serving a

passenger in group g. Our system is assumed to operate H minutes per day.

The decision variables included in the model formulation representing our problem

are defined in Table 2. The model follows.

Table 2: Decision variables
Variable Type Description

z` binary 1 if station constructed at `, for ` = 1, . . . , L
2

, 0 otw

xlg,τ binary 1 if group g assigned to train τ on kth time τ visits og , 0 otw

ρkg,τ integer number of customers from group t served by train τ on kth loop

yτ binary 1 if train τ is used, 0 otw

qkτ binary 1 if train τ in use for kth loop, 0 otw

wkl,τ continuous, ≥ 0 time at which train τ arrives at l for kth time

nkl,τ integer number of passengers on train τ leaving location l for kth time

maximize
∑
k∈K

∑
τ∈T

∑
g∈G

rgρ
k
g,τ −

∑
`=1...L

2

f`z` −
∑
τ∈T

cτyτ −
∑
k∈K

∑
τ∈T

vτq
k
τ

10



subject to

z` ≤ z1 ` = 2 . . . (L/2)− 1 (1)

z` ≤ zL/2 ` = 2 . . . (L/2)− 1 (2)

xkg,τ ≤ zI(og) τ ∈ T ; k ∈ K; g ∈ G (3)

xkg,τ ≤ zI(dg) τ ∈ T ; k ∈ K; g ∈ G (4)

qkτ ≤ yτ τ ∈ T ; k ∈ K (5)

yτ+1 ≤ yτ τ ∈ T \ {T} (6)

xkg,τ ≤ qkτ τ ∈ T ; k ∈ K; g ∈ G (7)

ρkg,τ ≤ Pgxkg,τ τ ∈ T ; k ∈ K; g ∈ G (8)∑
τ∈T

∑
k∈K

xkg,τ ≤ 1 g ∈ G (9)

wk+1
1,τ = wkL,τ τ ∈ T ; k ∈ K\ {K} (10)

wk`+1,τ = wk`,τ + δ`zI(`) + t`+1 τ ∈ T ; k ∈ K; ` ∈ L\ {L} . (11)

(ag − bg)xkg,τ ≤ wk`,τ τ ∈ T ; k ∈ K; g ∈ G (12)

(W − ag)(xkg,τ − 1) ≤ ag − wk`,τ τ ∈ T ; k ∈ K; g ∈ G (13)

nk`,τ − nk`−1,τ =
∑

g∈G;og=`

ρkg,τ −
∑

g∈G;dg=`

ρkg,τ τ ∈ T ; k ∈ K; ` ∈ L\ {1} (14)

nk1,τ =
∑

g∈G;og=1

ρkg,τ τ ∈ T ; k ∈ K (15)

nk`,τ ≤ uτ τ ∈ T ; k ∈ K; ` ∈ L (16)

z` ∈ {0, 1} ` = 1 . . . L/2 (17)

xkg,τ ∈ {0, 1} τ ∈ T ; k ∈ K; g ∈ G (18)

ρkg,τ ∈ Z+ τ ∈ T ; k ∈ K; g ∈ G (19)

yτ ∈ [0, 1] τ ∈ T (20)

qkτ ∈ [0, 1] τ ∈ T ; k ∈ K (21)

nk`,τ ≥ 0 τ ∈ T ; k ∈ K; ` ∈ L (22)

wτ ≥ 0 τ ∈ T (23)

11



where

I(`) =

 ` if ` ≤ L
2

L− `+ 1 otherwise.

In this formulation, constraints (1) and (2) force stations to be opened at the

first and last (physical) locations if stations are opened at any other locations. This

does assume that planners know where the system must begin and end. Since the

endpoints of a rail system serve as depots to store, maintain and repair trains, we do

not treat the locations of these two important facilities as separate decisions in this

work. Constraints (3) and (4) ensure that a group cannot be served unless a station

exists at its origin location and its destination location. Constraints (5) enforce the

relationship between the q variables and the y variable for each train. Constraints

(6) break symmetry by forcing trains to be used in order. Constraints (7) prohibit

the assignment of groups to inactive trains. Constraints (8) establish the relationship

between the x variables and the ρ variables for each group. Constraints (9) ensure that

groups are served by at most one train, on exactly one of its loops. Constraints (10)

and (11) enforce the train schedule based on the station configuration. Constraints (12)

and (13) enforce destination arrival windows for customer assignments. The constant

W , used in Constraints (13) and defined as W = K
∑

`∈L(δ` + t`) + H, is a logical

upper bound for wk`,τ . Constraints (14)-(16) enforce the capacity limitation for each

train as it departs each location on each of its loops. Finally, (17)-(23) define the

decision variables. Note that variables y, q, and n are continuous, but will take on

integer values in any feasible solution due to the problem structure.

The w variables in the above formulation make it simple to understand and model

the movement of trains in the system. Due to the network structure assumed above,

however, it is possible to eliminate many of the w variables using a simple substitution.

Once a train enters the system, its movement is implicitly controlled by the configura-

tion of the stations and the time spent at each station. Therefore, a single variable wτ ,

representing the time train τ enters the system, can replace wk`,τ using the following

substitution:

12



wk`,τ = wτ + k
∑
`′∈L

(δ`′zI(`′) + t`′)−
∑

`′∈L:`′>`

(δ`′zI(`′) + t`′)− δ`zI(`). (24)

We will adopt notation to simplify this substitution. By letting

S(`, k) = k
∑
`′∈L

(δ`′zI(`′) + t`′)−
∑

`′∈L:`′>`

(δ`′zI(`′) + t`′)− δ`zI(`), (25)

the substitution becomes

wk`,τ = wτ + S(`, k). (26)

This substitution eliminates the need for constraints (10) and (11). This more com-

pact representation will be used in the computational testing discussed in Section 5.

However, before considering computational issues, we explore an alternative approach

for efficiently generating solutions to our problem in the following section.

4 Solution methodology

Despite the linear structure of the rail network considered in this work, experimen-

tation has shown that our integrated problem requires a prohibitive amount of time

to solve using commercial optimization software. To illustrate this point, Table 3 re-

ports typical computational times2 for four instances generated randomly based on real

data gathered during this project. Note that this table is strongly indicative of results

seen across all experiments considered in this project. For more information on the

construction of these instances, see Section 5.

Table 3: CPLEX Results
Instance |G| L T H K Runtime (s) Best Soln. Best Bnd. Opt. Gap

1 200 8 10 500 8 36,000 125 1305.05 944.04%

2 300 14 20 500 6 36,000 2484 5890.27 137.13%

3 1000 30 25 700 9 -∗ -∗ -∗ -∗

4 2500 44 40 900 10 -∗ -∗ -∗ -∗

∗ Indicates that the memory on our test machine was exhausted

As Table 3 shows, our problem is difficult to solve even for very small test instances

and larger instances exhaust the available memory on our test machine very quickly.
2All experiments were performed using CPLEX 12 on an Apple R© iMac R© computer with an Intel R© Core

2
TM

2.66 GHz processor and 4 GB of RAM.
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Furthermore, we have found the problem to be difficult to solve even when many of

the decisions are fixed. For example, Table 4 shows the computational results for our

problem when the station procurement decisions and the vehicle procurement decisions

have been fixed (i.e. we assume that we know which stations should be opened and

which trains are utilized).

Table 4: CPLEX Results with Fixed Station Configuration and Train Procurement
Instance Runtime (s) Best Soln. Best Bnd. Opt. Gap

1 18000 239 1025.74 329.18%

2 18000 4172 5039 20.78%

3 -∗ -∗ -∗ -∗

4 -∗ -∗ -∗ -∗

∗ Indicates that the memory on our test machine was exhausted

Since CPLEX has such difficulty solving the train scheduling and customer assign-

ment subproblems, it was apparent that any solution methodology for the problem

should rely very little, if at all, on exact approaches to solve portions of the problem.

With this in mind, and because none of the heuristic techniques present in the litera-

ture could be easily adapted to our model, we developed a customized heuristic solution

methodology to solve the problem described in the previous section. An overview of

this procedure is described in the remainder of this section. More information regarding

the detailed mechanics of the heuristic can be found in the Appendix.

Our heuristic is neighborhood search-based, but features both segmented routines

and a nested structure within each of these routines. To clarify, our heuristic follows

the high-level process outlined in Figure 4, where portions of the best found solution

are carried over between each segment. The routines included in Figure 4 are described

as follows.

Initial Solution Construction Routine

In the Initial Construction and Improvement routine, a starting station configuration

is generated by exhaustively considering all possible station configurations and choos-

ing the station configuration that maximizes the “potential profit” associated with

station costs and passenger revenue. That is, if a passenger’s origin and destination

locations each possess a station, then his ticket revenue will be counted towards the

“potential profit.” At this point, any costs associated with serving that passenger other

than station construction are ignored (i.e. train procurement, operational costs). Once
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a configuration has been identified, a greedy method is used to construct an initial

solution. In this greedy method, each train is assigned a schedule that allows it to

serve the largest unserved group at the time. Other unserved groups are added if this

schedule allows them to be served. After all possible groups are added, the train is

checked for profitability (i.e. Does the customer revenue on that train at least cover

the costs associated with the train?). If the train is profitable, it is kept, otherwise

its passengers are removed and the process starts over with the next-largest unserved

group as a “seed.” This repeats until all trains are active and profitable or until all

unserved groups have been used as a schedule “seed.” This solution is used to estab-

lish a baseline fleet size. Next, a user-defined range of fleet sizes, (number of trains)

around this baseline will be considered. In our implementation, a fleet size range of 5

is used. For each fleet size in this range, a solution is greedily constructed that utilizes

the specified number of vehicles (i.e. vehicles are given schedules and passengers are

assigned to vehicles that could feasibly serve them). Finally, we attempt to improve

this constructed solution by modifying the train schedules and customer assignments

through the so-called improvement routine described below.
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Improvement Routine

In the improvement routine, a solution obtained via a separate routine (e.g. Con-

struction, Close, Open, etc.) is taken as an input and serves as the basis for our

improvement procedure. Given the current solution, a user-defined number of train

pairs are randomly selected, each train having an equal likelihood of being selected, for

additional consideration. The number of train pairs allowed in our implementation is

200. Amongst the trains available for random selection is a dummy train to which all

unserved customers are assigned. For each train pair considered, “group moves” and

“group swaps” are attempted. A group move consists of moving a group served on one

randomly selected train to the other randomly selected train. Similarly, a group swap

consists of randomly choosing a group, where each group has an equal probability of

being chosen, from each randomly chosen train and forcing each of these groups to be

served by the train to which they are not currently assigned. In each of these cases,

an attempt is made to serve the group or groups in question on the opposite train by

allowing the number of people served within a group to be modified in order to satisfy

train capacity. Next, an attempt is made to alter the train schedule so that any newly

considered customers might be served. This step is done via a straightforward modi-

fication of the train arrival windows. However, it is important to note that while the

train schedules can be altered to serve a new customer, no currently served customers

may become unserved in this process. The sequence of group moves and swaps are

repeated until a user-defined number of iterations have passed without improvement,

at which point the next train pair is considered and the process is repeated. In our

implementation, the limit on consecutive iterations without improvement is taken to

be 25. The improvement routine stops when all randomly selected train pairs have

been considered.

Close Routine

The Close routine begins with the station configuration identified in the Initial Solution

Construction. From this configuration, we explore a portion of the neighborhood of

solutions defined to be those with one fewer station than the current best solution. In

the first Close routine iteration, we consider all station configurations achieved by clos-

ing exactly one station that is open in the current candidate solution. For each of these

new configurations, the process outlined in the previous routines is performed (Con-

16



figuration → Construct for Baseline Fleet Size → Fleet Size → Construct → Improve

). After this iteration, the solution with the highest objective among those considered

is stored, even if it does not improve upon the overall best solution. This process is

repeated with the stored solution’s configuration (not necessary the configuration from

the overall best solution) serving as the starting configuration for the next Close iter-

ation. The iterations continue until no improvement has occurred for a user-defined

number of Close iterations, or until all stations are closed. In our implementation the

allowed number of iterations without an improvement is 2 for this routine.

Open Routine

A similar process as that found the Close routine is used to define Open routine. In

this case, we partially explore the neighborhood of solutions that can be found by

opening exactly one additional station in the configuration associated with the overall

best solution found to this point. All configurations that feature one more open station

than the current best are considered and the solution among these with the highest

objective is stored as the input to the next Open iteration. This process repeats until

a user-defined number of iterations have occurred with no improvement, or until all of

the stations are open. In our implementation the allowed number of iterations without

an improvement is 2 for this routine.

Swap Routine

In the swap routine, one currently opened station is closed, and one currently closed

station is opened. We start with the configuration that produced the overall best so-

lution up to this point. All possible pairs of stations consisting of one open and one

closed station are considered and follow the same process to produce and improve so-

lutions as detailed in the Improvement routine. After all possible pairs are considered,

the best of these solutions is stored and its configuration is the starting point for the

next Swap iteration. This process repeats until a user-defined number of consecutive

iterations pass without obtaining and improved solution. In our implementation the

allowed number of consecutive iterations without an improvement is 15 for this routine.

Modified Close/Open Routine

In this routine, we revisit the Close and Open concept using a modified search scheme.

Specifically, in an attempt to uncover complex interactions between multiple stations,
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we now allow up to 53 stations to be opened or closed at once. Starting with the con-

figuration from the best overall solution, we randomly decide whether to open or close

stations, and how many. A user-defined number of these configurations are considered

(i.e. solutions are created and improved for each configuration paired with a range of

fleet sizes) and the best of these solutions is stored. Our implementation allows for 50

of these configurations to be considered. This process is repeated with the stored con-

figuration as a starting point for the next iteration until a pre-set number of iterations

are completed without improvement. For our implementation, we require improvement

after at most 2 additional iterations in order to continue this routine.

Polishing Routine

In our final routine, we attempt to polish the best solution found using the previous se-

quence of routines. In this segment of the heuristic, we no longer consider configuration

changes, but instead focus on the train schedules and passenger assignments. We do

this by performing an extended version of the schedule improvement process outlined

above and by removing passengers from trains and train loops with very light ridership.

That is, if the passengers assigned to a train loop do not cover the operational cost of

that loop (vτ ) or if the total ridership for a train does not cover the procurement and

operational costs for that train, then the customers are removed from the loop or train,

respectively. An attempt is made to serve these customers on other trains if train pas-

senger capacity is available and train schedules allow for the customers to travel within

their desired time windows. However, it is important to note that the overall system

profit will increase from removing customers that do not generate revenue exceeding a

loop cost even if these customers remain unserved.

Notice that each routine found in Figure 4, except the final solution polishing,

follows the general steps outlined in Figure 5 in some way. The nested structure of the

heuristic follows the natural hierarchy of rail planning decisions outlined above. Our

heuristic, like our model, considers the interaction between these decisions in a way

that is not currently present in the literature. Again, a more detailed outline of the

heuristic process is given in Appendix B.

3The limit of 5 was put in place due to the increased computational cost incurred by considering multiple
stations beyond this level.
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5 Computational study

In this section we investigate the performance of the solution methodology presented in

Section 4 on a broad range of test instances. Before presenting our results, we discuss

motivation and mechanics behind the scheme utilized to generate each of our random

instances. Then we provide numerical results that offer insights into the capabilities of

the proposed heuristic procedure.

5.1 Experimental design

Using information regarding existing rail systems and commuter patterns, we devel-

oped a procedure for randomly generating experiments intended to resemble real-world

instances. The generation of our instances can be broken into: (i) determining poten-

tial station locations, (ii) assigning passenger demand time windows, (iii) identifying

each potential customer’s origin and destination and (iv) defining the appropriate rail

system operational parameters. The following subsections describe how we handle the

generation of each of these problem components.

Station Locations

The potential station locations were randomly generated in a manner consistent

with the variation of available locations in Northwest Arkansas, where we hope to
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apply our model. That is, we assume an ordered number of possible locations along a

single line. Note that the line might be representative of an existing rail bed, as is the

case in Northwest Arkansas. For each consecutive pair of potential station locations,

the number of miles between each location is a uniform random variable with range

[0.5, β] miles, where β ∈ [5, 15] miles, depending on the instance.

Passenger Time Windows

The time in which passenger demand occurs was generated in such a way that

two distinct “peaks” were present in the planning horizon in order to represent “rush

hour” demand caused by commuter traffic to and from work. Specifically, we generate

customer demand so that 60-80% of demand occurs during two “peak” periods during

the horizon. For a full-day horizon, these “peaks” may fall between 7:00-9:00 AM and

4:00-6:00 PM, for example. Note that for the instances studied in this section, the

horizon length is 500 minutes, leaving the full-length horizon to be studied in Section

6. Therefore, accurately modeling peaks and valleys in customer demand throughout

this horizon was accomplished by classifying our customers as one of three types:

commuters, students, or others. Then, arrival deadlines were generated according

to a uniform distribution bounded by the preset windows shown in Table 5 that are

specific to each customer type. Recall that each customer has both an originating

and return trip, therefore separate bounds are given for each trip. In addition, since

customers classified as “others” are assumed to travel anytime throughout the day with

equal likelihood, the deadline associated with this category’s outgoing trip is generated

uniformly between time 0 and the end of the horizon (500 minutes). The deadline

for the return trip of the “other” customers occurs with equal likelihood at anytime

between the deadline of the originating trip, which we refer to as ō, and the end of the

horizon. Passenger arrival window lengths were equally likely to be 15 or 30 minutes

Table 5: Customer Arrival Deadlines By Type
Customer Type/Trip Classification Arrival Deadline Bounds (min)

Commuters Outgoing Trip [100,175]

Commuters Return Trip [375,450]

Students Outgoing Trip [100,175]

Students Return Trip [375,450]

Others Outgoing Trip [0,500]

Others Return Trip [ō,500]
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for some instances and 30 or 60 minutes for others. This was done simply to account

for the various levels of flexibility that passengers might have.

Passenger Origins and Destinations

Passenger origins and destination were determined in a uniform manner (i.e. sta-

tions being equally likely to be an origin or destination) in some cases and with higher

variability (i.e. stations weighted based on popularity) in others in order to model

differing population and attraction distributions. To model increased variability in

customer/destination location, we again relied on the characterization of customer de-

mand as being baseline, variable or more variable. In the baseline case, customers

were randomly assigned an origin station4 from the set of randomly generated poten-

tial station locations, followed by a destination randomly chosen from the locations

down-track of the assigned origin station. In the variable and more variable scenarios,

the likelihoods of locations being chosen as destinations were varied with increasing

intensity as we moved from the variable to more variable scenarios. Specifically, in the

variable instances, the overall likelihood that a station serves as a customer origin or

destination ranges between 7% and 23%, with the sum of the probabilities associated

with each potential station is 1. For more variable instances, a wider range of 6-30%

of customer demand per station is possible. Here again, the sum of the probabilities

associated with each potential station must be 1. This scheme allowed us to represent

the realistic situation in which one location is primarily residential and would be a

likely customer origin in the morning whereas another location may be located in an

industrial area where many customers work, but few live. Therefore, morning traffic

would be heavy outbound from the residential area and inbound to the industrial area,

while afternoon demand would follow the opposite pattern.

Rail Operations

With regard to more specific operations of the rail system, we assumed a cruising

train speed of 35 miles per hour based on various existing rail systems found in the

literature [1]. Furthermore, we assumed train costs between $500,000 and $2 million

and 15-20 year operational lives depending on the instance. These values are consistent

with the values presented in [1]. For randomly generated instances, station procurement

costs were set between $2.5 million and $15 million with an assumed life of 50 years.

4each origin was equally likely
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These values are slightly lower than many station costs for existing systems [1, 2] since

we assume that stations in rural settings would be cheaper due to lower construction

and real estate costs.

5.2 Numerical results

In this section, we provide a comparison of the performance of the heuristic approach

described in Section 4 and that of a commercial optimization solver. All experiments

were performed using CPLEX 12 on an Apple R© iMac R© computer with an Intel R© Core

2
TM

2.66 GHz processor and 4 GB of RAM. All instances considered in this section

feature 14 locations, 20 potential trains, and were generated using the procedures and

definitions presented in Section 5.1. Unless indicated otherwise, daily station costs

for these instances are uniformly generated between $200 and $900 and the customer

arrival window length, b, is selected to be 30 or 60 minutes with equal probability.

The default capacity for trains in these instances is 175 passengers unless otherwise

specified in the naming convention presented in the following subsection.

5.2.1 Instance naming convention

To describe the characteristics of each instance tested, a four-part naming conven-

tion is adopted. The computational instances are named according to the following

convention.

• First Character of Instance Name: All instances begin with the letter B, V, or M.

These letters are used to indicate baseline, variable, or more variable customer

demand variability, respectively. Each of these levels were described in Section

5.1 and reflect the likelihood that a particular station is chosen as a customer’s

origin/destination.

• Second Character of Instance Name: The second character in all instance names

is either a 3 or a 5. A value of 3 (5) indicates that there were 300 (500) groups

considered in that specific instance.

• Third Character of Instance Name (optional): In some instances, we’ve investi-

gated the impact of varying certain default parameters (e.g. station cost, train

capacity or passenger arrival window). For instances in which this additional con-
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sideration was made, a “special” character appears as the third character in the

instance name. The optional third character may be an S, C or W, indicating a

change in station cost, train capacity or passenger arrival windows, respectively.

The details of the changes associated with each of these special characters is as

follows:

– S indicates that, on average, the station costs considered in that instance are

higher than those considered in a default instance. Specifically, the station

costs are now generated uniformly between $500 and $1000 dollars.

– C indicates that the train capacity for that instance was reduced from the

default of 175 passengers per train. The actual value of the train capacity

considered in that instance is indicated as a superscript of the character C.

– W indicates that passenger arrival windows are shorter than the default of

30 or 60 minutes. For that instance, the passenger arrival windows are taken

to either be 15 or 30 minutes.

• Last Characters of Instance Name (optional): For certain combinations of prob-

lem characteristics, multiple random instances were generated. In these cases,

different instances generated using the same parameter values are differentiated

by an underscore ( ) followed by a replicate number.

To illustrate this naming convention, consider an instance named V5W 2. From the

name, we know that the instance has variable customer demand with 500 groups and

a reduced customer window length. The “ 2” indicates that this is the second instance

of type V5W. In the following section, we analyze the computational performance of

our approach on instances identified using this naming convention.

5.2.2 Heuristic versus CPLEX

The instances presented in Table 6 were randomly generated simply to assess the value

of our heuristic versus that found by CPLEX. Note that in each of these instances the

number of loops, K, is set to the value of 5, with the remaining parameters identified

by the naming convention and default parameter values discussed in Section 5.2.1. In

the results associated with each of the 8 instances shown in Table 6, the heuristic

obtains a solution with an objective notably better than that obtained by CPLEX in
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Table 6: Comparison Between Heuristic and CPLEX
Instance Heur. Runtime (s) Final Heur. Obj. CPLEX Runtime (s) Best CPLEX Obj.

V3 1 804 4195 7200 0

V3 2 345 3149 7200 0

V3 3 119 4943 7200 0

B3 826 4059 7200 425

B5 251 9847 7200 0

V5 1 1404 7043 7200 0

V5 2 108 9844 7200 0

V5 3 1388 4105 7200 0

the allotted time of 2 hours. In fact, in 7 of the 8 instances, CPLEX failed to find a

solution that improved upon a plan that “does nothing” (i.e. open no stations, serve no

customers). The ability of our heuristic to obtain improved solutions over a commercial

solver is amplified by the fact that CPLEX was given 2 hours to provide its solutions,

while the heuristic, on average, required only 655.6 seconds. These results were very

much indicative of all our attempts to use commercial optimization software to identify

solutions to the rail planning problem. Consistently, the commercial optimization

tool failed to obtain a solution that located any stations or served any customers.

Fortunately, the heuristic approach described in Section 4 provided profitable solutions

in each of these cases. However, further analysis is needed to assess the value of the

proposed heuristic approach. Therefore, a broader set of tests will be considered in

the next section that will assist us in understanding the effectiveness of the different

phases of our heuristic in obtaining improved solutions to our problem.

5.2.3 Heuristic performance

A more comprehensive set of results used to assess the performance of our heuristic are

presented through the expanded set of instances shown in Tables 7 and 8 below. Recall

from Section 4 that our heuristic proceeds through three phases: (i) Construction; (ii)

Improvement and (iii) Polishing. Table 7 serves to evaluate the impact of these three

phases. The percentage shown in the Improvement column is calculated as follows:

zFinal − zConstruction

zConstruction
.

Improvements indicated by a ‘-’ indicate that the original construction solution was no

better than the “do nothing” option. Therefore, while the final polished objective has
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Table 7: Heuristic Results: Objective and Improvement
Instance Runtime (s) Init. Constructed Obj. Pre-Polish Obj. Final Obj. Improvement

B3 1 58 1995 2972.5 2977.5 49.25%

B3 2 502 2730 3087.5 3102.5 13.64%

B5 1 111 5972 7639.5 7727 29.39%

B5 2 204 5867 6869.5 6872 17.13%

B3S 139 -1177 0 0 -

B5S 292 2173 3673 3733 71.79%

V3 1 318 -842 273 320.5 -

V3 2 180 1588.5 2043.5 2066 30.06%

V5 1 259 2072.5 4180 4290 107.00%

V5 2 517 3864.5 6017 6182 60.00%

V3S 635 229 1311.5 1311.5 472.71%

V5S 1419 2776.5 4346.5 4369 57.36%

M3 1 214 -222 1122.5 1132.5 -

M3 2 910 1165 3239 3354 187.90%

M5 1 563 2623.5 4921 5173.5 97.20%

M5 2 305 2181.5 5973 6138 181.37%

M3S 799 292.5 1640 1720 488.03%

M5S 711 3002.5 4637.5 4682.5 55.95%

B3C50 272 -2069 0 0 -

B3C75 194 -1683.5 0 0 -

V3C50 533 -1444 0 0 -

V3C75 915 -46.5 696 971 -

M3C50 458 -1792 304.5 514.5 -

M3C75 951 -611 1557.5 1690 -

B3W 1 183 -1755.5 0 0 -

B3W 2 457 0 0 0 -

V3W 1 341 -1552.5 0 0 -

V3W 2 422 -483 0 0 -

M3W 1 1284 519 1715 1772.5 241.52%

M3W 2 254 -665.5 174.5 174.5 -

improved, the percent of improvement cannot be compared with the results in which

the initial construction heuristic had a positive objective.

It is clear from Table 7 that the improvement and polishing phases have a significant

impact on solution quality. On average, the percent improvement of the final objective

over the initially constructed objective is 135.02% . All of these improved solutions were

obtained in less than 30 minutes, with the average time required being 480 seconds.

For the case in which default train capacity and passenger arrival window values (i.e.

175 passengers and arrival windows of 30 or 60 minutes) were used, our heuristic finds

a profitable solution in 17 of the 18 corresponding instances. However, the results also

suggest that decreasing the train capacity results in instances for which the heuristic

has difficulty finding a solution that serves any customer demand profitably. A similar

observation can made when the passenger arrival windows are reduced in the last 6
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instances of Table 7. In this case, the heuristic fails to find a profitable solution in 4

out of the 6 considered instances.

Table 8 provides further insights into the actual characteristics of the final rail

system plan obtained for each instance considered. We can see that in a majority of

instances, approximately half of the stations considered for the system are actually

chosen. Interestingly, if stations were opened, a high percentage of customers were

served. Specifically, for instances in which at least one station was opened, over 84%

of groups, as well as over 84% of total customer demand is satisfied. To serve these

customers, only a relatively small fleet of trains was required as only 3-5 of the 20

potential trains were actually utilized in the final solutions.

Table 8: Heuristic Results: Final Solution
Instance Stations Open Fleet Size Groups Served Passengers Served

B3 1 7 3 287/300 2973/3110

B3 2 7 3 271/300 2925/3227

B5 1 7 4 479/500 5002/5254

B5 2 7 4 471/500 4540/4931

B3S 0 0 0/300 0/3123

B56 7 4 455/500 4606/5135

V3 1 5 4 229/300 2269/3111

V3 2 7 3 228/300 2870/3134

V5 1 7 4 422/500 4388/5309

V5 2 7 3 432/500 4432/5266

V3S 5 3 230/300 2337/3188

V5S 7 4 424/500 4334/5237

M3 1 6 3 242/300 2497/3127

M3 2 5 3 274/300 2956/3248

M5 1 7 4 427/500 4449/5264

M5 2 5 3 464/500 4868/5281

M3S 7 4 289/300 3080/3240

M5S 7 5 444/500 4545/5284

B3C50 0 0 0/300 0/2905

B3C75 0 0 0/300 0/3244

V3C50 0 0 0/300 0/3213

V3C75 7 5 254/300 2664/3247

M3C50 3 4 171/300 1741/3063

M3C75 5 4 216/300 2278/3353

B3W 1 0 0 0/300 0/3062

B3W 2 0 0 0/300 0/3283

V3W 1 0 0 0/300 0/3134

V3W 2 0 0 0/300 0/3063

M3W 1 6 5 286/300 3409/3583

M3W 2 7 4 193/300 2179/3233

Unfortunately, we are unable to comment on the performance of our heuristic in

relation to the optimal solution for any non-trivial instances since we have been unable
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to prove optimality for any such instance to date.

6 Case study: Northwest Arkansas

The University of Arkansas Community Design Center (CDC) publication, Visioning

Rail Transit in Northwest Arkansas [7] is credited with the original inspiration for this

work. In the study, city planners and University of Arkansas students made a case

for rail transit in the Northwest Arkansas (NWA) region, which includes communities

such as Fayetteville, Lowell, Springdale, Rogers, and Bentonville. The arguments pre-

sented in the report for developing a rail system in NWA were primarily qualitative

in nature. Analytical planning tools were not used to select the station locations that

were proposed, illustrated in Figure 6.

Northwest Arkansas is home to multiple post-secondary schools, including the Uni-

versity of Arkansas, attended by over 20,000 graduate and undergraduate students.

Numerous companies also have their headquarters or regional offices in NWA, includ-

ing Walmart Stores Inc., J.B. Hunt Transport, Inc. and Tyson Foods, Inc. Due to

heavy inter- and intra-city commuting to these and other destinations, traffic conges-

tion is an ever-present issue in the region. Rail transportation is one option available

to city planners hoping to reduce congestion.

Using actual NWA commuter, geographical, and real estate data, along with infor-

mation gleaned from existing rail systems in the U.S., we constructed an instance for

the rail planning model that is representative of the NWA region. A formal feasibility

study would require resources unavailable to us, but the instance we have generated

mirrors the typical size and structure of any rail system that might be proposed in the

area. In creating the instance, we explicitly accounted for different classes of passen-

gers: (i) commuters, (ii) university passengers (e.g. students and teachers) and (iii)

others (e.g. citizens going shopping or to visit others in the community). Instance de-

tails are given in Table 11 and described in the remainder of this section. Importantly,

we show that the heuristic outlined in Section 4 is applicable to instances representa-

tive of growing rural areas and produces solutions in an acceptable amount of time,

considering the integrated nature of our planning model. This is important because

the NWA instance exhausts computer memory almost immediately when commercial
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Figure 6: Map of NWA with CDC’s Proposed System
Source: Visioning Rail Transit in Northwest Arkansas [7]
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optimization software attempts to solve it.

A list of potential station locations were generated for the NWA instance utiliz-

ing our knowledge of the region, locations of large employers, residential areas, busy

highways, schools, and other attractions. These locations, which all lie along an ex-

isting rail right-of-way, are listed in Table 9. The costs of building stations at these

locations were estimated using publicly available assessed property values [3, 6] and

costs for existing rail systems [1, 2]. We assume station costs in NWA would be lower

than those in more urban areas due to the availability of lower cost land and labor,

and our estimates reflect this assumption. Train procurement costs, operational costs,

speed, and capacity were estimated using information available from existing systems

[1]. We assume the time required for a train to stop at a station to unload and load

passengers is 2 minutes and is independent of the station and number of passengers.

A revenue per customer of $2.50 is assumed for all customers served regardless of their

trip length. Trains are assumed to operate for 15 hours (900 minutes) per day, begin-

ning at 6:00 am. To estimate zip code-to-zip code commuter volume, we used data

from [4] compiled by [19] along with data from [26]. We assumed a 10% adoption level

for most commuter lanes. This was reduced to 5% for passengers commuting between

adjacent zip codes, and also for park-and-ride commuters. Adoption level was reduced

to 1% for travel within a single zip code. Using data provided by the University of

Arkansas and The Northwest Arkansas Community College (NWACC) outlining stu-

dent commuter numbers by zip code, we used similar methods to estimate student

demand. For each potential customer group, an original trip (usually morning) and a

return trip were generated. If multiple potential stations existed in a single zip code,

we assumed customers were equally likely to originate from any of these stations with

two exceptions:

1. The station nearest a highway was selected as the origin for all park-and-ride

customers.

2. Locations identified as light origins (e.g., Fayetteville Drake Field) were half as

likely to serve as a customer origin than other locations in the same zip code.

When multiple potential stations existed within a zip code, destination selection was

weighted by the size of employers located near the potential stations. For example,

29



between the two stations in Bentonville, commuters were twice as likely to be destined

for the Walmart HQ location over the alternate Bentonville location because Walmart

employs a large percentage of Bentonville workers. Destinations were limited to school

locations for students, and were randomly generated for other customers, though some

locations were designated as attraction locations and more likely to be selected. Cus-

tomer arrival deadlines were assigned uniformly within the ranges given in Table 10,

and arrival window lengths were equally likely to be 30 or 60 minutes.

Table 9: NWA Instance Proposed Stations and Distances
` Station Name `− 1 to ` (miles) Zip

1 Fay - Drake Field 0 72701

2 Fay - 15th St 3.1 72701

3 Fay - MLKJR Blvd 0.7 72701

4 Fay - Dickson St 1.0 72701

5 Fay - Maple Ave 0.4 72701

6 Fay - Cleveland St 0.4 72701

7 Fay - North St 0.4 72703

8 Fay - Sycamore St 0.7 72703

9 Fay - Township St 0.9 72703

10 Fay - Drake St 0.6 72703

11 Fay - Wash. Reg. Med. Cntr. 0.5 72703

12 Fay - Joyce St 1.1 72704

13 Johnson 0.8 72704

14 Spring - Tyson 1.8 72762

15 Spring - Robinson Ave 1.5 72764

16 Spring - Sunset Ave 0.6 72764

17 Spring - Emma Ave 0.7 72764

18 Lowell 5.0 72745

19 Rogers - New Hope Rd 3.5 72758

20 Rogers - Walnut St 2.0 72756

21 Benton - NWACC 4.2 72712

22 Benton - Walmart HQ 2.6 72712

Table 12 outlines the results of our computational testing for the NWA instance.

It demonstrates that our heuristic improved upon its initial constructed solution dra-

matically. Importantly, given that the objective of our problem is to maximize profit,

it is interesting to learn that results from this experiment suggest that a profitable rail

system may be attainable. Table 13 provides some interesting details regarding the

characteristics of a possible NWA rail system. For the instance considered, the system

would use 20 of the 22 possible station locations, omitting only the locations at Martin

Luther King Blvd and Drake St in Fayetteville, AR. While we allowed for up to 40

trains to be included in the system, our solution suggests that only 7 trains are needed

to attain a daily profit of $3,645. Finally, it is interesting that almost 67% of potential

30



Table 10: NWA Parameter Details
Parameter Values

ag

60-180 (morning commuters)

660-780 (evening commuters)

120-360 (morning students)

420-680 (evening students)

0-900 others

bg 30/60

cτ 290

f` 323-1933 (based on land price and station type)

H 900

Pg 1-9

rg $2.50

t` 0.7-8.6 (based on geography)

uτ $150

vτ $100

Table 11: NWA Instance Overview
Groups 2830

Total Potential Passengers 14368

Locations 44

Potential Trains 40

Horizon (min) 900

K 10

System Length (miles) 32.5

passenger demand would be satisfied using the plan produced by the heuristic.

The strength of conclusions drawn from this experiment are limited by the strength

of data available. Clearly, the approach proposed in this paper is most useful when

reliable data obtained from a formal feasibility study is used to populate the model.

Based on our investigation, there is evidence to suggest that a rail system is worth

investigating further. In a future study conducted in partnership with city officials

and financial experts, the heuristic described in this paper can effectively evaluate the

feasibility of a NWA rail system.

Table 12: NWA Instance Computational Results
Runtime (s) 32334

Initial Constructed Objective -434.5

Pre-Polish Objective 2987.5

Final Objective 3645
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Table 13: NWA Instance Final Solution Statistics
Stations Open 20/22

Fleet Size 7/40

Groups Served 1983/2830

Passengers Served 9620/14368

Table 14: NWA Instance Heuristic Solution Station Configuration
` Station Name Status

1 Fay - Drake Field Open

2 Fay - 15th St Open

3 Fay - MLKJR Blvd Closed

4 Fay - Dickson St Open

5 Fay - Maple Ave Open

6 Fay - Cleveland St Open

7 Fay - North St Open

8 Fay - Sycamore St Open

9 Fay - Township St Open

10 Fay - Drake St Closed

11 Fay - Wash. Reg. Med. Cntr. Open

12 Fay - Joyce St Open

13 Johnson Open

14 Spring - Tyson Open

15 Spring - Robinson Ave Open

16 Spring - Sunset Ave Open

17 Spring - Emma Ave Open

18 Lowell Open

19 Rogers - New Hope Rd Open

20 Rogers - Walnut St Open

21 Benton - NWACC Open

22 Benton - Walmart HQ Open

7 Future work

Our efforts revealed a number of future research directions stemming from this work.

First, we realize the importance of allowing trains to enter and leave the system to

accommodate peaks in demand. This reduces costs by cutting out operational costs

for some trains during periods with low demand. The model that we presented in

this work does allow trains to “sit out” loops as a cost-saving measure, but the times

that trains can possibly re-enter the system after leaving are mandated by the rigid

train movement constraints. One resolution would be the development of an alternative

model that requires a new non-negative continuous variable, ∆k
τ , representing the delay

time that train τ spends at the depot between loops k−1 and k (defined for k ∈ K\ {1}).

This allows trains to delay for any non-negative amount of time between each loop.
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These changes would result in the following model:

maximize
∑
k∈K

∑
τ∈T

∑
g∈G

rgρ
k
g,τ −

∑
`∈L

f`zI(`) −
∑
τ∈T

cτyτ −
∑
k∈K

∑
τ∈T

vτq
k
τ

subject to

xkg,τ ≤ zI(og) τ ∈ T ; k ∈ K; g ∈ G (27)

xkg,τ ≤ zI(dg) τ ∈ T ; k ∈ K; g ∈ G (28)

z` ≤ z1 ` = 2 . . . (L/2)− 1 (29)

z` ≤ zL/2 ` = 2 . . . (L/2)− 1 (30)

qkτ ≤ yτ τ ∈ T ; k ∈ K (31)

yτ+1 ≤ yτ τ ∈ T \ {T} (32)

qk+1
τ ≤ qkτ τ ∈ T ; k ∈ K\ {K} (33)

xkg,τ ≤ qkτ τ ∈ T ; k ∈ K; g ∈ G (34)

ρkg,τ ≤ Pgxkg,τ τ ∈ T ; k ∈ K; g ∈ G (35)∑
τ∈T

∑
k∈K

ρkg,τ ≤ Pg g ∈ G (36)

(ag − bg)xkg,τ ≤ wτ + S̄(dg, k, τ) τ ∈ T ; k ∈ K; g ∈ G (37)

(W − ap)(xkp,τ − 1) ≤ ap − wτ − S̄(dg, k, τ) τ ∈ T ; k ∈ K; g ∈ G (38)

∆k
τ ≤ Hqkτ τ ∈ T ; k ∈ K\ {1} (39)

nk`,τ − nk`−1,τ =
∑

g∈G;og=`

ρkg,τ −
∑

g∈G;dg=`

ρkg,τ τ ∈ T ; k ∈ K; ` ∈ L\ {1} (40)

nk1,τ =
∑

g∈G;og=1

ρkg,τ τ ∈ T ; k ∈ K (41)

nk`,τ ≤ uτ τ ∈ T ; k ∈ K; ` ∈ L (42)

z` ∈ {0, 1} ` = 1 . . . L/2 (43)

xkg,τ ∈ {0, 1} τ ∈ T ; k ∈ K; g ∈ G (44)

ρkg,τ ∈ Z+ τ ∈ T ; k ∈ K; g ∈ G (45)

yτ ∈ [0, 1] τ ∈ T (46)

qkτ ∈ [0, 1] τ ∈ T ; k ∈ K (47)
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nk`,τ ≥ 0 τ ∈ T ; k ∈ K; ` ∈ L (48)

wτ ≥ 0 τ ∈ T (49)

∆k
τ ∈ [0, H] τ ∈ T ; k ∈ K\{1} (50)

where

S̄(`, k, τ) = S(`, k) +
∑

2≤k′≤k
∆k′
τ . (51)

It would also be interesting to investigate how to allow customers to be served

by multiple potential stations, while capturing their preference of one station over an-

other. This is relevant when multiple “park & ride” facilities could serve an intermodal

customer or in very densely populated areas where multiple potential station locations

are being considered in a relatively small area.

Finally, the inclusion of the stochastic nature of passenger demand, train sched-

ules, and/or future population growth is needed to assist planners in accounting for

the uncertainty associated with community growth. We are especially interested in

modeling the phenomenon that has been observed after many passenger rail systems

are implemented in which the rail system itself causes a shift in population growth

trends.

8 Conclusions

The model we have proposed is a first step at integrating many decisions faced by rail

system planners. It is important to point out that we consider only a portion of the

costs associated with an operational commuter rail system. In fact, we have focused

on a subset of the overall process required to design a new rail system. We do feel,

however, that we have integrated portions of the planning process that have typically

been considered separately in the planning process.

Our heuristic is motivated by concepts that are mature in the operations research

community. However, the neighborhood considered in our heuristic is unique from

those considered in single-stage planning problems. The model that we developed is

very complex, and the strong interaction between continuous and discrete decisions

made it difficult to apply common heuristic methods without extensive customization.
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In real-world applications, complex side constraints and interactions are common, and

heuristic techniques are often necessary to produce suitable solutions. We feel that our

customized approach can serve as to assist others faced with problems not easily solved

by “out of the box” heuristics.

Finally, our case study provides a glimpse into the real world applicability of inte-

grated rail planning models. Our results for NWA indicate that a passenger rail system

may, in fact, be a good option for planners in the area to pursue further. Our objec-

tive value should not be interpreted to mean such a system would operate with large

daily profits since many costs were not considered here (e.g. administrative overhead,

track construction). We have merely shown that such a system could potentially be

an operational success with modest adoption levels.

With further development, and with technological advances in computing, inte-

grated methods should eventually become a reality for rail planners in rural settings

and later in larger systems.
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9 Appendix A: Notation and decision variables

Sets

Table 15: Sets

G
G, indexed by g, represents the set of potential passenger groups
in the rail system (members of the same passenger group share
origins, destinations, and arrival deadlines)

K

K = {1 . . . K}, indexed by k, represents the number of loops that
a train may make around the network where K is a calculated
upper bound on the possible number of loops (A loop is defined
to be leaving the first station and visiting each open station in
the network before returning to the first station)

L

L = {1 . . . |L|}, indexed by `, contains all possible station lo-
cations along the track with one element of L corresponding to
each location for each direction of travel. That is, station 1 and
L both correspond to the first station, 2 and |L| − 1 to the sec-
ond possible station, and so on until the last station, which is
represented by |L|

2
and |L|

2
+ 1.

T T = {1 . . . T}, indexed by τ , represents the set of trains that
could potentially serve customers on the network
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Parameters

Table 16: Parameters

ag
The latest possible arrival time for group g (defined for g ∈ G,
0 ≤ ag ≤ H)

bg

The maximum amount of time that passenger group g may ar-
rive before its arrival deadline, ag (defined for g ∈ G, any train
that arrives at dg before ag but after ag − bg is eligible to serve
all or some of the passengers in group g

cτ The cost of procuring train τ (defined for τ ∈ T )

dg The destination location for group g (defined for g ∈ G, dg ∈ L)

f`
The cost of procuring a station at location ` ∈ L (defined for
` = 1 . . . L/2)

H The length of the service horizon, in minutes

og The origin location for group g (defined for g ∈ G, og ∈ L)

Pg The total number of passengers in group g (defined for g ∈ G)

rg
The revenue for serving one passenger from group g a single time
(defined for g ∈ G)

t`

The time required for any train to traverse the distance from
location ` − 1 to location ` at cruise speed (defined for ` ∈ L,
for ` = 1 this value should be zero or should represent the delay
between arriving at location |L| on loop k and starting loop
k + 1)

uτ The capacity of train τ , in customers (defined for τ ∈ T )

vτ The cost of operating train τ for one loop (defined for τ ∈ T )

W
W = |K|

∑
`∈L(δ`+ t`)+H) is a logical upper bound for the wk`,τ

variables

δ`

The additional time required to stop at location ` in the even
that a station exists there, including the delay associated with
deceleration and acceleration (defined for ` ∈ L)
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Decision Variables

Table 17: Decision Variables

nk`,τ

A non-negative, continuous variable representing the number of
passengers on train τ leaving location ` for the kth time (defined
for ` ∈ L; τ ∈ T ; k ∈ K, may be a continuous nonnegative
variable but will take on integer values due to problem structure)

qkτ

A continuous variable on [0, 1] that takes a value of 1 if train τ
is active for loop k and 0 otherwise (defined for τ ∈ T ; k ∈ K,
may be continuous on [0, 1] but will take on integer values due
to problem structure)

wk`,τ

A continuous non-negative variable that represents the time that
has elapsed from the beginning of the horizon to the time that
train τ arrives at location ` for the kth time (defined for ` ∈
L; τ ∈ T ; k ∈ K)

wτ

After the variable-space reduction, the nonnegative continuous
variable wτ represents the time that train τ enters the system
(defined for τ ∈ T )

xkg,τ

A binary variable with a value of 1 if group g is assigned to train
τ on its kth loop and 0 otherwise (defined for g ∈ G; τ ∈ T ; k ∈
K)

yτ

A continuous variable on [0, 1] that takes a value of 1 if train τ
is active for any loop and 0 otherwise (defined for τ ∈ T , may
be continuous on [0, 1] but will take on integer values due to
problem structure)

z`
A binary variable with value 1 if a station is procured at location
` and 0 otherwise (defined for ` = 1 . . . |L|/2)

∆ If we add delay model to future work
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10 Appendix B: Detailed heuristic outline

The outline below describes our heuristic in moderate detail. Simple or self-explanatory

functions have not been outlined completely, but some of the more complicated func-

tions have been described below the heuristic. The file instance.dat contains values

for all instance parameters. The file parameters.txt contains values for user-defined

heuristic settings. At various points, solution information is saved in four different

global “bins:” cand, best, hold, and tsih. These “bins” store some or all of the values

for problem variables and the objective value.

Main(instance.dat, parameters.txt)
// create necessary instance data structures and read values from instance.dat
Initialize(instance.dat)
// read heuristic parameters from parameters.txt
ReadParams(parameters.txt)
// return the station configuration with the greatest potential profit,
// ignoring scheduling issues and train costs
candZ = GetStartingConfig()
// construct fleet size and solution from scratch
ConstructSolution()
// store new best solution
ReplaceBestWithCand()
activeTrains = Sum(candY )
holdObj = −10000
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

// construct solution for specific fleet size using method j
ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

// improve cand solution by manipulation customer
// assignments and train scheduling
ImproveCandSolution(fleetSize,tCutoff,gCutoff)

if candObj > holdObj
ReplaceHoldWithCand()

if holdObj > bestObj
ReplaceBestWithHold()
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Main Cont’d

stepZ = bestZ
holdObj = −10000
noImpr = 0
numOpen = Sum(bestZ)
for i = 0 to numOpen − 3

candZ = stepZ
for ` = 1 to L/2− 2

if candZ [`] == 1
candZ [`] = 0
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > closeCutoff

Break
if bestObj < 0

ReplaceBestWithZero()
stepZ = bestZ
holdObj = −10000
noImpr = 0
numClosed = L/2− Sum(bestZ)
if numClosed == L/2

stepZ [0 ] = 1
stepZ [L/2 -1 ] = 1
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Main Cont’d

for i = 1 to numClosed − 3
candZ = stepZ
for ` = 1 to L/2− 2

if candZ [`] == 0
candZ [`] = 1
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > openCutoff

Break
stepZ = bestZ
holdObj = −10000
noImpr = 0
numOpen = Sum(bestZ)
numClosed = L/2− numOpen
for i = 0 to swapSteps− 1

for j = 0 to numClosed − 1
for m = 0 to numOpen − 1
// open jth closed station and close mth open station
candZ = SwapOpenClosed(j,m)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
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Main Cont’d

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > swapCutoff

Break
stepZ = bestZ
holdObj = −10000
noImpr = 0
for i = 0 to revisitSteps− 1

for j = 0 to revisitStepSize− 1
// randomly choose whether to open or close stations
if RandomU() < 0.5 // open stations

numClosed = L/2− Sum(StepZ)
toOpen = RandomIntBetween(1,min(5, numClosed))
candZ = OpenStations(toOpen)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
else // close stations

numOpen = Sum(StepZ)
toClose = RandomIntBetween(1,min(5, numOpen− 2))
candZ = CloseStations(toClose)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
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Main Cont’d

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > revisitCutoff

Break
ReplaceCandWithBest()
fleetSize = Sum(candY )
// try to serve any remaining unserved customers
PolishPartOne()
// extended version of ImpoveCandSolution()
ImproveCandSolution(fleetSize,polishTCutoff, polishGCutoff)
// shut down trains that aren’t even covering own cost, shut down loops that arent covering v
// attempt to serve customers from these trains elsewhere
ClearLightRunsAndLoops()
if candObj > bestObj

ReplaceBestWithCand()

ConstructSolution()
for τ = 0 to T − 1
seedGroup = −1
// only returns groups that have not served as a seed, if none returns -1
seedGroup = GetLargestUnservedGroup()
if seedGroup == −1

Break // all groups tried
// return w so that train τ can serve seedGroup in the middle of its window
wτ = ScheduleTrainToServeG(seedGroup)
// attempt to add all unserved groups to train τ & update x variable
// train schedule can flex to serve new customers but cannot uncover others to do so
ServeAllPossibleGroups(wtau)
// call CPLEX to solve MIP - maximize revenue subject to capacity constraint
// also updates n and q variables based on ridership
SolveRhoMIP()
// check if newly scheduled train is profitable
if CheckTrainProfitability(τ) == 0
// remove customers assigned to train τ reset associated variables

ClearTrain(τ)
τ− = 1

else
candY [τ ] = 1
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ConstructFleetSolution(fleetSize,method)
if method == 0 // largest group

for τ = 0 to fleetSize− 1
candY [τ ] = 1
seedGroup = −1
seedGroup = GetLargestUnservedGroup()
if seedGroup == −1

Break
wτ = ScheduleTrainToServeG(seedGroup)
ServeAllPossibleGroups(wtau)
SolveRhoMIP()

else // equidistant starting schedules
buffer = GetLengthOfLoop()/fleetSize
for τ = 0 to fleetSize− 1
wτ = τ ∗ buffer
ServeAllPossibleGroups(wtau)
SolveRhoMIP()

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
for i = 0 to impTrainLoops −1

// choose two trains using RandomIntBetween() with uniqueness check
// train -1 serves as dummy train for unserved passengers
train1 , train2 = ChooseTrainPair()
for j = 0 to impGroupLoops− 1

ReplaceTsihWithCand()
// choose one group from each train selected above
group1 , group2 = ChooseGroupFromEachTrain(train1 , train2 )
temp = RandomU()
if temp < probGroupSwap// swap two groups

// serve group on train if possible and update variables
// set ρ as large as possible for newly served group
serve1 = ServeGroupOnTrain(group1 , train2 )
serve2 = ServeGroupOnTrain(group2 , train1 )
if serve1 + serve2 == 2

if tsihObj > candObj
ReplaceCandWithTsih()
gNoImpr = 0
tNoImpr = −1

else
gNoImpr+ = 1
if gNoImpr > gCutoff

Break
tNoImpr+ = 1
if tNoImpr > tCutoff

Break
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